Category Archives: Hobbyist’s Essentials: Magnetic Levitator

One of the electronic hobbyist’s essentials: a magnet levitation device

The current regulator

The current regulator – this module converts the current setpoint signal (from the position regulator) into a drive current for the magnet coil. This is achieved using a TL494 PWM modulator chip, and two BUZ11A (50 V – 0.045 Ohm – 26 A) MOSFETs, each operated at 50% duty.


Brief description:
The current setpoint signal is connected to JP1-9, connected to one of the comparators of IC2, the TL494. The other comparator is used as a current limiter: the sense wires of a 0.05 Ohm shunt in the coil supply line are connected to the input of IC1, and intrumentational amplifier, via JP1-7 and JP1-8. You might have to change the amplifier gain by modification of R5.
Current setpoint is adjusted by trimmer R14. JP1-3 and JP-4 provide the gate drive for the two BUZ11A MOSFETs. The drains are connected to the coil, the sources are joined at the current shunt.
Directly, at the MOSFETs, which are mounted on a heatshink (but don’t actually get hot), together with current shunt, there are several electrolytic capacitors (low ESR type), and a 1 µF PP cap (polypropylene dielectric, for pulse current service) in parallel with the (non-regulated) magnet supply. In combination with a strong and fast Schottky diode (anode at the MOSFETs, cathode a the positive supply), these caps are the best protection against any transient voltages when the coil is de-energized.

The position regulator

The position regulator takes the output from the position sensor, and converts it into a voltage drive signal. Nothing fance-it is just an opamp implementation of a PID regulator.


Brief description:
The position signal is connected to JP1-8, and converted to a 0-referenced voltage, relative to the desired position setpoint (R13, 10-turn pot), using IC1A, 1B and 1C.
JP7-1 provides this shifted signal for monitoring (position error signal). Opamps IC2A, 2B and 2D for the proportional, differential, and integral parts of the PID regulator. The P-component is made user-settable via R14 – a 10-turn pot. The other components only need some initial adjustment, depending on the coil you are using (C5 and C8 might also need adjustment; use high-quality capacitors, Mylar or similar). IC1D sums all the regulator components, and has R12, another 10-turn used-adjustable pot for total gain adjustment. Total gain is the most critical adjustment, if you change the type/weight of the suspended part.
IC2C adds a constant offset-just to prepare the signal (available at JP1-3) for the current regulator. JP1-5 has the intermediate current regulator setpoint, for monitoring purposes.

The position detector

The position detector module senses the exact position of the object suspended below the magnet, using a modulated infrared (IR) light beam, and a frequency-selective phototransitor amplifier, and converts it into a voltage signal. The range is a few mm, so there will be a need to adjust the position of the detector, if you want to change the distance from the magnet.
The circuit is pretty fast, and can detect position changes in the range of a few micrometers easily, and at kHz bandwidth. Also, the output (voltage vs. gap) is very linear, this has been checked with the help of a micrometer stage, used to block part of the beam.


Brief description – lower part, the IR emitter driver:
This part of the circuit uses one half of a 324 quad opamp – IC1D is running as an oscillator, and IC1C, as a current regulator for the IR emitter, a Fairchild QED233 (940 nm, 40 degrees emission angle, 1.5 A peak forward current). R11 is the current sensing resistor – a BUZ11 is used as a driver. The QED233 is attached to JP1-1 (cathode) and JP1-2 (anode). R12 and C7 de-couple the IR emitter supply, to avoid interference with the receiver circuit.

The upper part, the IR receiver: active element is a Fairchild QSD124 phototransitor (narrow angle, 24 degrees, IR diode with daylight filter), attached to JP1-5 (collector) and JP1-6 (emitter).
The phototransitor output first passes through a high-pass filter, R6/C3, and then through a rectifier, D1. The resulting signal is then low-pass filtered to remove the ripple (R8 added to reduce noise/oscillations), and amplified (IC1A). IC1B does some further clean-up, and provide a nice drive signal for the other circuits. R1 really serves no function other than being a handy test point for troubleshooting.

The coil, the circuits

Others have explained at length the theorical background of magnetic leviation, and the associated regulator maths. I don’t want to get into this here – feel free to ask, I will explain it to you.

The goal: an apparatus that can hold a sphere of at least 1 kg mass (about 60 mm diameter, 2 1/2″) suspended from the pole of the magnet, in a distance of at last 25 mm/1″. It should be adjustable to hold also other parts, and not restricted to magnets (many of the available hobbyist leviation circuits can only hold magnets).

With the goal set, and after some calculations, related to electric magnet, heat dissipation, allowable maximum temperature for free air operation, time constants – the coil: about 10 kg of copper, of roughly 3 mm diameter wire. I selected a high-temperature type W210 isolated copper wire, this will withstand long term use even if the coil is operated permanently at full current. Don’t worry about the space the 10 kg will take, copper is very dense… Winding it can be a bit tough, as always, ask a friend for help, and best wind it with the help of a lathe (by manually turning it), or some other makeshift fixture. Winding it free-hand is not a good choice, because you won’t get a nice and tight coil.


For the circuits, these were build in modular style:

(1) The position detector – based on an infrared LED, and infrared photodiode, and fully independent of the lighting conditions. Is uses a modulated emitter, and a frequency-selective detector. It needs to have a reasonably fast response, and low noise/drift, otherwise, the regulation loop will be unstable – the sphere will start oscillating, and drop off.

(2) The position regulator – this is a classical PID regulator, build using a few TL074 opams. It compares the position setpoint and acutal position (from position detector, item 1), and determines the current needed to hold the sphere stable (current setpoint signal).

(3) The current regulator – this circuit converts the current setpoint signal into a drive current for the coil. To avoid undue powder dissipation in the regulator, this is achieved use a classic TL494 PWM regulation scheme. There is also a current limiting circuit, build-in, with a 0.050 Ohm 4-lead sense resistor in the coil current loop, and an AD620 instrumentation amplifier.

(4) Some auxilliary circuits – to switch off the magnets by disabling the current regulator, if there is no object attached. Otherwise, the magnet would run at full current, if the sphere drops off, and dissipate a low of heat for no good reason. Some power supply circuits – to provide 12 V power for the regulators, and unregulated 35 V to drive the magnet.

Magnetic Levitation – revisited!

There are some standard project around that more or less every electronics enthusiast will engage in, and one of these is a magentic levitation device. Don’t get me wrong, standard doesn’t mean boring. This class of project has certain characteristics that just make them very suitable for the hobbyist:

(1) They don’t need a lot of fancy equipment or parts to start with, can be build (mostly) from some electronics scrap.

(2) They offer a good combination of theory and practical circuit design. Beginners should be able to get it going, even if they don’t fully understand how it works.

(3) The effect should be striking, not just a blinking light, but something a bit more exciting. Noise, sparks, etc., or special visual effect – here, for the levitator, nothing less than the electronic compensation of the ubiquitous gravitational force.

Why revisited? Well, a long story – my first magnetic levitation device dates back to 1992, which was not much more than a few transistors, resistors, and capacitors (picture to come).

The basic circuit – which I modified a bit, using an infrared LED, a phototransistor, and some tuning of the capacitor/resistance values to make it work better with the given magnet:
Source: Hobby-Schaltungen : für d. Anfang ganz einfache Elektronik-Schaltungen mit geringem Materialaufwand.
Schreiber, Herrmann
München : Franzis, 1984.

As basic as the circuit were its capabilities – it could hold only very light objects, say, a few grams. Nothing substantial.
It still was enough to attract some attention at a German young scientist competition, Jugend Forscht.

At the same time, I discovered an exhibit at the “Deutsches Museum” in Munich, which is unfortunately no longer at its place, and this was a much bigger machine, dating to the 1960s, with serious thyristors, and a huge coil, that could hold something like a 50 mm/2″ massive steel sphere at several cm distance.
This was something that was very intriguing, but at the time, I didn’t have the means to replicate such a device. I figured that is should be much easier now than in the 60s, with all kind of semiconductors around – but still there was a need for a massive electric magnet, and a few more parts than just the regular circuits that can be found around the web.