Category Archives: PLL

GHZCTRL6: a new GHz-PLL control board, and a few learnings when prototyping with cheap (fake!) parts

Recently, we have to work with many PLL designs, mostly the frontends, based on ADF41020, ADF5002, ADF4157 and similar circuits, including their programming. So I decided to design a little board that can flexibly interface to all these circuits, and provide enough power.

(1) Power supply to allow 10 V full scale output, 5V supply, 3.3V (or 3V) design. Noise should be low and flat without any discontinuities or peaks.
(2) A pretune circuit with 12 bit monotonous tunable voltage, scaleable to 0..10 Volts to control the main coil current drive of YTOs.
(3) A PLL loop amp to adjust the working range of the PLL FM tune (PLL circuit may provide 0-5 V, but need to have a driver to translate to, say 0-10 V). Used an ADA4048-2 low noise rail-to-rail opamp. These are reliable, and can tolerate somewhat capacitive loads like long cables.
(4) An isolated RS232 (TTL level) interface that can work at any reasonable baud rate (7.3278 MHz will do the trick as MCU clock).
(5) Easily in-circuit programmable, we use a common ATMEGA8L-8 MCU.
(6) Some status LEDs. Say, 3 LEDs.

After not too long, came up with this design and had it manufactured as boards at 40 eurocents a piece(!).

The schematics, they are a bit rough, but if you need more detail, let me know. All fairly standard. The regulators are good old LM317T, with 10 uF bypass caps. This gives reasonably low noise, and we can operate this without special cooling over a wide range of input voltages (15-20 VDC). Current consumption incl. LCD is about 40 mA.

The LCD, any common LCD board will do. I use a 1602A 2×16 character.

After some fiddling around, it is working temporarily. Programmed the ATMEGA8 just fine.

The LCD, it took some in-circuit repairs because after a short time of operation the contrast faded away. Note that this is a 3.3 V LCD that has an ICL7660 to convert +3.3 V to -3 V. But not with this module, just getting about -0.2 V. After replacing the ICL7660, it turned out to be a shorted capacitor (tested 10 Ohm!).

With things working pretty well, soldered in the SMD DAC, a DAC8512 (DAC7761 also works with same pinout and performance). But rather than the expensive parts for production sourced from major distributors, resorted to some low price parts purchased in sets of 10 pcs, and at hand here in my temporary Japanese workshop. Did do much D to A conversion, but rather shorting the inputs to almost ground and consuming lots of power. Not good. Some forensics showed that these are certainly not DAC8512, but something else (with diodes and circuits inside) marked as such. Strangely, from the same reel/cut tape, there are Philippines and China made parts, all a bit scratched and strangely smelling like fake. The laser marking are all the same.

Markings on the Philippines parts:

Markings on the China parts:

I have some genuine parts back in Germany but no picture handy currently. Well, I ordered some more DACs to get this to work, but won’t be an issue, the amplifier is working just fine.

ADF41020 18 GHz PLL: universal divider and PLL board

I cannot praise Analog Devices enough for the ingenious designs, and for providing parts like the ADF41020, a fully integrated 18 GHz PLL. This is actually part of a major design effort for a multi-channel frontend, here just a description of the small test board used to establish the general circuit layout and board design.

Probably interesting is also the hand-soldering of the LFCSP leadframe package, which is actually not as difficult as it seems. For soldering of the pad, there is a large via in the center, which does provide good heat-sinking and is easy to solder through the 1.2 mm board.

pll18d0 layout

Above, the layout, below, 10 boards – 14 dollars and a few weeks later.

pll18d0 pcbs

For soldering, best use 0.5 mm Ag-containing SMD solder, with Type 32 flux, which is halogen free resin flux.

pll18d0 solder

To mount the LFCSP, first apply some solder to the chip pads, but not to the center/heat sink pad. Apply some flux to the board (which is already pre-tinned; use any good SMD flux pen). Then align with a good magnifier, using some Kapton tape to hold the chip in place – leave one side exposed. Then solder, in one stroke, using a medium hot soldering tip. Reflow another time – one side done. Remove the Kapton tape, and solder the remaining 3 sides. Then stick down the chip with Kapton tape again (to avoid any remote chance of movement, in case all the solder melts during the next step). Turn around the boards, and solder through the via, with a fine solder tip.

pll18d0 via

pll18d0 adf41020 mounted

pll18d0 full board

For a test, just apply a test signal to the input, and use the “MUX” output to check for any pulses. There we go:

pll18d0 2215 pulses

These pulses aren’t quite long, so it is one of the few occasions where a scope more advanced than the 2215 Tektronix is really useful in the home shop… same pulses on a HP/Agilent/Keysight 54720A, 54713B plug-in, and 100 MHz 1:10 probe.

pll18d0 pulse out

These fast risetime pulses, and the various prescalers, dividers and good input sensitivity make the ADF41020 quite useful for any PLL and frequency counting applications.

pll18d0 2ghz in 25 khz out

2 GHz in, 25 kHz out — confirmed.

About the input sensitivity: the ADF41020 is specified over a 4 to 18 GHz range – how about lower frequencies? A quick look at the input circuit shows a 3 pF capacitor – which equals a reactance of about 53 Ohms, at 1 GHz (i.e., the capacitor and termination resistor will cut the input power available to the buffer approximately in half).

pll18d0 rf input

pll18d0 input sens

… quite useful down to 1 GHz, no problem or instability at all. Also checked the the reproducibility, for 3 devices – not a lot of scatter.