Category Archives: Various

Rigol DS1052D=DS1102D Oscilloscope: encode issue fix

For about 8 years, I have been using a Rigol DS1052D 50 MHz scope (which works up to 100 MHz with a well known software fix), but recently, it has given me some grieve: the knobs turn, but the settings jump, both for scale and time base. This is quite annoying – trying to fix something, with broken tools or scopes, is no fun.

Already expecting the worst, like, mechanical failures of the scope of encoders, or some strange software bug (because all encoders were affected at virtually the same time), I decided to open up the scope. Easier said then done. There are 4 screws, two of which are under the handle, and you have to remove the powder on button with some bent wire (don’t scratch the case!). Then, move around the back cover, eventually, it will come off! Don’t give up! Don’t remove the screws of the power input socket!

Once inside, you need to take off the two screws for the D9 connector, and then, several more screws to take out the power supply, before you finally get to even further screws holding on the front panel.

Before taking any soldering iron to replace the encoders, as suggested by some folks on google, I tried to use the magic DeoxIt D5 to clean up things and to get it going again. Just spray some of the stuff into the encoders, there are some small openings (circled red on in the image). Turn the encoders to make it work. After a while, clean of any excess D5, don’t let it get in touch with the rubber of the DS1052D buttons – most rubber can handle D5, but better not try your luck!

And, it worked like magic. Not only are the encoders working again, but also the feel of the knobs is much better, not as sticky as it used to be.

SME Tonearm Series V: a really THIN wire!

A rare guest in my workshop, a high class “SME Series V” tonearm, a great item for the audiophile! Unfortunately, the arm we are dealing with is not working – easily traces the issue to a broken wire. Wait – with the tone arms, you can’t just pull out the old wire and put in some odd wire – it needs to be 0.0127 mm2 seven-strand silver wire!

sme tonarm 1

sme wire

After some careful disassembly action, one of the wires was found broken at the needle end, easy enough, soldered it back on, followed by even more gentle and careful re-assembly of the unit.

tonarm wiring

All in all, nothing too difficult, but not an everydays’ task, and it made a friend of mine, the proud owner, happy again!

Marantz Stereo Amplifier PM-14 MkII: explosive silicon

A heavy beauty, a Marantz Amplifier, PM-14. Certainly worth a detail look – according to the owner, the left channel is not working, and some smoke escaped along with burned smell.

No wonder – the two main transistors of the left channel are blown, say, exploded. And, upon further inspection, also the traces leading to the transistors, at least some of the traces – evaporated.

bty

This is the full view of the left channel amp (right channel is quite similar, but mirror image – some components placed at slightly different positions.

bty

bty

Some burnt resistors replaced…

bdr

The board is double sided, but not through-plated, and the quality, well, is not all that good – needs to be soldered with care, otherwise the traces will lift.

After some further checks, fitted a new set of transistors (ISC brand, China – still better than some fake “Sanken” transistors), but to the biggest disappointment, when switching on, these exploded in a loud BANG when adjusting the idle current. Well, turns out that also one of the earlier stages had a short transistor 2SA1145. More testing revealed another defect, a dead Zener (exchanged both Zener, to make sure that there are no issues with temperature drifts etc.).

With all these things fixed, time for a test, using a HP 8903A, and a scope. The HP 8903A is really handy, if your are into any quality audio repairs.

The test setup –

nor

Distortion measured at several frequencies, and several volts RMS at the output (using a 5.6 Ohm dummy load – just because I didn’t want to take out the 4 Ohm precision load for these power levels). -80 dB total harmonic distortion+noise, not bad.

bty

bty

bty

The front view – it has the classic Marantz indicator, for best sound, wait until it has warmed up.

bty

nor

As a reference, just in case you need it, the service manual Marantz PM-14 Service Manual. Or, just send me a message, or the come along with your dead amplifier.

HP 8640B Signal Generator: A new divider

The veritable 8640B generator, a marvel of engineering and still remarkable design today, it has reached an age where repair is often hampered by obsolete parts – sure, you can search for a donor unit or some NOS parts in some far away places, but in other cases, it is more practical to replace the circuitry with some new parts, especially, if the circuit is easily tested and verified.

This applies to the pre-scaler/frequency counter, which is an essential part of the 8640B, at least, if you want to use its internal counter (the 8640B is not PLL controlled).

Thanks to a kind contributor, Bodo, here a brief story of the repair:

(1) Symptom: the 8640B showed irregular frequency counts, completely unrelated to the expected output frequency. First consideration was a defective band switch (which has a cracked Delrin gear), but test with a spectrum analyzer revealed a perfectly good signal. Connecting a 0-10 MHz signal to the external counter input also gave perfectly good counting.

(2) After study of the schematic, the issue could be traced to the RF scaler, which is located in a die-cast cavity. Note that there are various versions of this board, but all feature some ECL logic ICs, with high power consumption.

prescaler 8640b assemblly

(3) Further tests showed that the first divider, :2 was defective.

(4) There are several ways to fix this. Here, the complete divider chain was replaced by a U644BS, available in DIP8. This IC is quite common in old TV tuners. There were also several projects in popular electronics magazines of the 90s to use the U664 as a pre-scaler up to 1.3 GHz.

Datasheet U664B U664BS

Picture of a random tuner from the web, using a U664B:
prescaler tuner

With the external input, the 8640B is counting up to 900MHz, sensitivity is better than -25dBm.

Note that the U866BS is self-oscillating (not a problem, because the 8640B oscillator is permanently attached for internal counting).

The modified prescaler board under test:

prescaler 8640b u664bs under test

One side effect is the much lower temperature of the RF scaler (much lower power consumption of the U664BS vs. the old ECL logic).

Finally, this is the schematic, the signal is connected from a-INPUT to b-OUTPUT.

prescaler 8640b schematic

Dual CV 1600 Stereo Amplifier: a real HiFi classic with some capacitor smoke, and a very large dropout voltage regulator

This one is a real gem, a stereo amplifier, Made in Germany, and nicely constructed in the 1970s, using mostly discrete parts.

cv1600 front

Some issues are common to all old amplifier, like, defective switches, aged contacts, and so on, but these can be fixed with good contact spray, or by (mechanical) repairs. For the CV 1600, most common fault is the X2 mains capacitor, 47 nF, which will eventually turn into smoke and stench. Be sure to replace this part, if you have a CV 1600.

The 47 nF X2 rated cap is located on a fuse board, and to get access, you need to remove all the transistor wires. This is best done with great care, and without damaging the wires, otherwise, it is quite laborious to connect everything back up again.

sdr
sdr

This CV 1600 also had another issue, no signal from the distribution amplifier board. Some first check showed issues with the +15 V rail being stuck at ~7V. Probably a defective Tantalum or other capacitor? Probably not – not much current flowing either, so it is not related to a short at the output.

dav
dav

Inspecting the regulator – it is a TO-202 LM341p15, pretty rare nowadays.

dav dav[/caption]

No heatsink on the regulator, so I got a bit worried with the dissipation of TO-202 vs. TO-220 devices – all I have in stock are TO-220 regulators, LM78xx series.

cv1600 to202 vs to220

lm341p15 to202

lm7815 to220 heat resistance

After inspection of the datasheets – nothing to worry about. Pretty similar heat resistance, junction to ambient. Voltage drop is about 10 V, current roughly 50 mA, so, 0.5 W – roughly 30 K temperature rise.

A quick test with a 5.6 Ohms, 250 W dummy load showed no further issues (except an incorrectly installed signal cable, probably from an earlier attempt of someone else to fix this unit?).

Finally, some performance data of the CV 1600.

cv1600 data

HP 6115A Precision Power Supply: repair complete!

No repair can proceed, without sufficient time, and without the right spare parts. Time was very much occupied by other business recently, spares took time to ship from Greece to Germany… the 2N6211 transistors.

Here they are – the 2N3442 are China-made (ISC) transistors of rather recent production, the 2N6211 date back to 1992.
Not much to write about the further repair, mounted the transistors on the heat sink, soldered-on the cables, replaced the Zener diodes of the main board (series regulator bias), and switched the 6115A on. Success! Some minor calibration of the panel meter. Other than that, all in good shape.

6115a-spare-transistors

Various things can be measured to verify the correct operation of the 6115A, here just a quick test checking all the ranges, linearity, and deviations. In short, it is very much more accurate than the 0.025% + 1 mV output accuracy specification.

6115a-deviations1

6115a-deviations-ten

6115a-deviations-ones

After a full cool-down, checked the stability/drift after a cold start, with the output programmed to 10 volts. It is ramping up nicely, with some very minor “instability” during the first hour, but then stabilizing to almost perfect level. This is with no load. Sure it may degrade a bit under full load, fair enough (horizontal axis shows measurement number, period is about 0.3 s per measurement).

6115a-drift

Finally, this is the working precision supply.

6115a-working

HP 6115A Precision Power Supply: not just one defect mixed with a lot of precision

The HP 6115A is a really great power supply, 0-50 V @0.8 Amp, 50-100 V @0.4 Amp, 0.0005% load and line regulation, 0.01% current regulation, 100 uV p-p ripple, 0.0015% drift over 8 hours, 0.025 + 1 mV accuaracy of output voltage, all in all, challenging design objectives still today. Unfortunately, the unit discussed here has not any of these characteristics, it is dead, and missing the current adjustment pot.

6115a-as-delivered

At least, it is a reasonable clean unit, and at a first glance, nothing major, like a completely melted board or smoking transformer. Judging from the soldering, someone already tried to fix it but gave up mid-way. Sure, I will not give up with this supply too soon.

First things first – the current pot, a 10 turn 1 k, HP part 2100-1864 (Bourns 3540S): missing. Looking around in my parts collection – but no luck. At the very bottom of a stack of old electronics junk, a WTW 610 pH meter from the 1970s. This is used to convert pH electrode signals, to proper voltages, but even more important, it has 2 pcs 1k Helipot 7276 series 1 k pots. These are 20 ppm tempco, even better than the Bourns (50 ppm).

6115a-ph-unit

6115a-helipot-1k

6115a-front-view

With the 1 kOhm pot fitted, still no function. About 60 V at the output, and the current limit LED lit, regardless of current or voltage setting.

Looking around inside – a few issues found. There are several uncommon parts, like, a STB523 = 1N4830 voltage stabilizer, which is more or less a stack of 3 Si diodes. These parts are not commonly available anymore, so I replaced the defect regulator diode with a series assembly of three 1N4148 diodes.

1n4830-stb523-1901-0460

6115a-3pn-diode

Found a few more issues, several blown Zener diodes, all around the Q1-Q4 transistors. This is not good, because it may indicate some blown power transistors. And if fact, it did not take long to find out that Q1 has a full B-E-C short, and Q4 is C-B short, E-C, E-B open. No wonder that this disturbed the bias network Zeners, VR3, VR4.

6115a-dead-transistor

The transistors, 2N3442 NPN (Q1-Q3), and 2N6211 (PNP, high voltage power TO-66), at least the latter, not quite common – on order from an xbay seller in Greece, 5 EUR a piece of old and obsolete part, OK!
The power transistor board was an awful mix of bad soldering and flux, finally, cleaned and most of the solder removed.

6115a-pwr-transistor-board-cleaned

Found another defect – no voltage on C8, one of the main capacitors. Reason: a blown trace, from tap 16 of the transformer. Temporary fix with a yellow wire….

6115a-trace

After some repairs, at least the basic voltages and supplies are up and working again, all capacitors tested, and working fine. Also reviewed the regulator board and its voltages (not shown in below diagram, red cross means dead part removed, green cross means part absent but tested good), all is fine and working.

6115a-reg-schematic-annot

Note the working principle of the series pass regulator – it is a dual range setup, with a high voltage regulator, Q1 and the low voltage regulator Q2/Q3, all driven by the common Q4. Diodes CR11 and CR12 (a dual-diode element) is directing the current from the appropriate transformer DC supply (2 equal DC voltages of about 80 Volts are generated from two separate windings).

6115a-two-range-regulator

Apart from a 1N829 0.0005% tempco temperature compensate diode, there is another remarkable part used in the circuit, a 10 ppm 10 turn trimmer – not quite cheap, and still available today!

6115a-trimmer-10-ppm

This is the current state of the instrument, waiting for the spare transistors, before I can put it back together, and hopefully, put it back in service.

6115a-board-top-view

HP 83572A RF Plug-in 26.5-40 GHz: only a fuse away from the highest frequencies

Not one of the most preferred things to repair – a rather rare 26.5-40 GHz sweeper plug-in, not producing any output. Despite its rather simple function as a signal source, typically, not easy to fix if any of the microwave parts are faulty. New, close to 18 kUSD, so it is nothing you can easily replace from a hobby budget, and 26.5-40 GHz sources are not easy to come by.

40ghz-1

40ghz2

Inside, all full of heatsinks, and a few waveguides.

40ghz-waveguid

The modulator.

40ghz-modulator-45211h-2900h

The YTO. Not many companies around that can manufacture such devices.

40ghz-0960-0670-wj-5610-25

First thing to test, with no output present – the YIG oscillator. This has two main items: the bias supply, which is more or less just a variable voltage power supply which is tuned along with the frequency sweep. Secondly, the main tuning coil current, providing the magnetic field for the YTO. Checked both – and found the bias supply at 0 Volts. No wonder there is no output.

40ghz-a7-bias-assy-schematic

Upon inspection of the schematic, I noticed the fuse, which is rather hidden down on the motherboard. And, it was blown. No idea why – maybe just because of its age? Sure enough, HP did not use just any ordinary fuse, but a BUSS GMW model.

40ghz-buss-gmw

USD 9 per piece – that’s a steep price for a fuse.

40ghz-fuse

Cut the fuse open, and connected a 5×20 mm European style fuse. All protected by a piece of shrink tubing.

40ghz-fuse-replacement

Well, an about 1 hour later, the YTO is oscillating again, and you can see a nice and strong signal, well over 90 dB useful range, to test attenuators, or whatever 26.5-40 GHz device you want to put to test.

40ghz-transmitting

40ghz-receiving-again

EIP 545A Microwave Frequency Counter: another dead tantalum repair

It’s not the first fix of an EIP counter here, and I have to say, these units are still very useful tools around any RF and microwave workshop, despite their age. The unit under repair, judging from the date code of the parts, is about 25 years old.

The symptoms – the EIP is just not counting. Showing 000000 zeros in the display, but no count. To confirm, you can use the build-in test function 01, by pushing test-0-1, and normally the counter will show “200 000 000”. But no indication of any counting activity for the current unit.

First thing you do, checked all the rails, and turns out the 12 V rail is dead. Starting from the right, removed all boards inside. And soon the defect was traced to the A107 board, gate generator assy.

Checking with the schematic, there are several ceramic and one tantalum cap.

eip-cap-desoldered

Desoldered the tantalum, and it is no cap any more, just a short.
With all the various tantalum shorts repaired in the past years, there seem to be to cases, some tantalum go fully short and activate the power supply protection circuit, with little powder dissipated over the tantalum. This is the good case. Some other tantalum seem to develop a short with some resistance, leading to considerable power dissipated in the cap, causing stench and risk of fire. The latter more seems to be more common with SMD tantalums, for reasons unknown. Also, the tantalum story is one of the many reasons why you should design current limit circuits, and power supply protection circuits, even in low power equipment, especially, if there are any valuable components that you might want to protect from a power supply failure.

eip-cap-a107-gate-gen-assy

eip-cap-replaced

The 10 uF replaced, with a new orange cap, but same “drop” style.

eip-counting-again

After carefully installing the A107 assy back into the counter (take care not the damage any of the wires), all is good. Counting at 200 MHz with the test function 01 activated.

A Thermal Fuse, and HP 10811-60111 Repair

Usually, I don’t care much about high precision oscillator options being fitted to frequency counters, etc., because in the lab, any critical equipment is anyway connected to an external well-controlled 10 MHz reference, locked to DCF77. However, this time I need to install a OCXO (HP 10811) in a HP 5335A counter for service outside of the lab.

The only thing that needs to be done is to remove a jumper on the board of the 5335A (see red box in picture below), and mount the 10811 in the slot already prepared for the OCXO inside.

ocxo 5335a jumper

While such installation is fairly straightforward, it turned out to take more time than expected – simply because of the OCXO not showing any stable output signal.

ocxo 10811-60111

After a few quick tests, the cuprit was found, a defective (open) thermal fuse. This is apparently a quite common issue for the 10811 oscillators, and you might get away with just putting in a wire jumper. However, I didn’t want to take any risk of overheating in case of a failure of the 25+ years old OCXO circuits. An exact match for the thermal fuse could not be found, so just soldered in (very carefully, cooling the case and leads!) a 10 Amp 109 degC fuse.

ocxo fuse picture

This is the OCXO with the new fuse installed.

ocxo new thermal fuse

This style of fuse as a non-insulated outer shell, so a shrink tubing sleve serves as insulation.

ocxo insul sleve

Finally, a note found in a datasheet of a common thermal fuse – it clearly states that lifetime will be limited when operating the fuse to close to the cut-off temperature. So clearly, thermal fuses are not the best protective mechanism for the OCXO case. Maybe better would be a bimetallic switch (self-resetting, but at least no subject to any significant aging), or some other device like a PTC.

Sure, we can slightly blame the HP engineers, because it is stated on most thermal fuse datasheets, like the one below, that the operation temp limit should be about 30 degC less than the cut-off, which is not quite the case for the 10811 OCXO. 80 to 84 deg C operation, 109 degC fuse cut-off.

ocxo storage temp

ocxo thermal fuse