Dual CV 1600 Stereo Amplifier: a real HiFi classic with some capacitor smoke, and a very large dropout voltage regulator

This one is a real gem, a stereo amplifier, Made in Germany, and nicely constructed in the 1970s, using mostly discrete parts.

cv1600 front

Some issues are common to all old amplifier, like, defective switches, aged contacts, and so on, but these can be fixed with good contact spray, or by (mechanical) repairs. For the CV 1600, most common fault is the X2 mains capacitor, 47 nF, which will eventually turn into smoke and stench. Be sure to replace this part, if you have a CV 1600.

The 47 nF X2 rated cap is located on a fuse board, and to get access, you need to remove all the transistor wires. This is best done with great care, and without damaging the wires, otherwise, it is quite laborious to connect everything back up again.

sdr
sdr

This CV 1600 also had another issue, no signal from the distribution amplifier board. Some first check showed issues with the +15 V rail being stuck at ~7V. Probably a defective Tantalum or other capacitor? Probably not – not much current flowing either, so it is not related to a short at the output.

dav
dav

Inspecting the regulator – it is a TO-202 LM341p15, pretty rare nowadays.

dav dav[/caption]

No heatsink on the regulator, so I got a bit worried with the dissipation of TO-202 vs. TO-220 devices – all I have in stock are TO-220 regulators, LM78xx series.

cv1600 to202 vs to220

lm341p15 to202

lm7815 to220 heat resistance

After inspection of the datasheets – nothing to worry about. Pretty similar heat resistance, junction to ambient. Voltage drop is about 10 V, current roughly 50 mA, so, 0.5 W – roughly 30 K temperature rise.

A quick test with a 5.6 Ohms, 250 W dummy load showed no further issues (except an incorrectly installed signal cable, probably from an earlier attempt of someone else to fix this unit?).

Finally, some performance data of the CV 1600.

cv1600 data

Really Hot: Brick Oven Pizza at Home

To prepare a brick oven pizza, no doubt, the most suitable apparatus would be a brick oven, wood fired. However, it is hard to come by at your home, and not quite viable to heat up such massive equipment just for one or two pizzas.
Time to try out a present received for xmas, a brick, which fits my oven very well. The material is Schamotte, a Mullite-type Si-Al-Oxide material. Make sure to get a food grade stone, because many refractory bricks intended for industrial use contain heavy metals, and this is not what we want for the pizza.

pizza schamotte stein

For the dough, there are a few things to consider. It can’t be too soft, otherwise, it will be difficult to handle. Some good recipes:

Basic Recipe

500 g wheat flour (unbleached, German type 405)
–> can be substituted by a mixture of 150 g of whole wheat flour, and 350 g of wheat flour.
15 g of salt
3 spoons of vegetable oil
1 spoon of sugar
270 ml warm water
10 g of yeast, or sufficient active dry yeast

To prepare the dough, dissolve yeast and sugar in water, and add salt, oil, and about 3/4 of the flour. Mix thoroughly, add remaining flour, mix, and knead with your hands until the dough is nice and firm.
Let rise for 1-2 hours, or longer, depending on temperature.

Form into round pieces, about 100 g each for small size pizza, and let these pieces rest for about 35-45 minutes.

pizza dough

Above, this is what it should look like.

Then, roll out the pieces, without any further kneading, and use some flour and semolina as an anti-stick agent.

Make sure the stone is pre-heated at full power, 250°C temperature.

pizza before

Put the pizza on a wooden panel of appropriate size to move it around, and slide it on the stone. Don’t add too much sauce, otherwise, the pizza might get stuck to the stone.

pizza after

MMMMMMHHhhhh delicious!

pizza breads

Needless to say, there are many uses for the pizza stone, like, baking bread rolls, onion breads, or flat breads. A great opportunity for some experimentation!

HP 6115A Precision Power Supply: repair complete!

No repair can proceed, without sufficient time, and without the right spare parts. Time was very much occupied by other business recently, spares took time to ship from Greece to Germany… the 2N6211 transistors.

Here they are – the 2N3442 are China-made (ISC) transistors of rather recent production, the 2N6211 date back to 1992.
Not much to write about the further repair, mounted the transistors on the heat sink, soldered-on the cables, replaced the Zener diodes of the main board (series regulator bias), and switched the 6115A on. Success! Some minor calibration of the panel meter. Other than that, all in good shape.

6115a-spare-transistors

Various things can be measured to verify the correct operation of the 6115A, here just a quick test checking all the ranges, linearity, and deviations. In short, it is very much more accurate than the 0.025% + 1 mV output accuracy specification.

6115a-deviations1

6115a-deviations-ten

6115a-deviations-ones

After a full cool-down, checked the stability/drift after a cold start, with the output programmed to 10 volts. It is ramping up nicely, with some very minor “instability” during the first hour, but then stabilizing to almost perfect level. This is with no load. Sure it may degrade a bit under full load, fair enough (horizontal axis shows measurement number, period is about 0.3 s per measurement).

6115a-drift

Finally, this is the working precision supply.

6115a-working

HP 6115A Precision Power Supply: not just one defect mixed with a lot of precision

The HP 6115A is a really great power supply, 0-50 V @0.8 Amp, 50-100 V @0.4 Amp, 0.0005% load and line regulation, 0.01% current regulation, 100 uV p-p ripple, 0.0015% drift over 8 hours, 0.025 + 1 mV accuaracy of output voltage, all in all, challenging design objectives still today. Unfortunately, the unit discussed here has not any of these characteristics, it is dead, and missing the current adjustment pot.

6115a-as-delivered

At least, it is a reasonable clean unit, and at a first glance, nothing major, like a completely melted board or smoking transformer. Judging from the soldering, someone already tried to fix it but gave up mid-way. Sure, I will not give up with this supply too soon.

First things first – the current pot, a 10 turn 1 k, HP part 2100-1864 (Bourns 3540S): missing. Looking around in my parts collection – but no luck. At the very bottom of a stack of old electronics junk, a WTW 610 pH meter from the 1970s. This is used to convert pH electrode signals, to proper voltages, but even more important, it has 2 pcs 1k Helipot 7276 series 1 k pots. These are 20 ppm tempco, even better than the Bourns (50 ppm).

6115a-ph-unit

6115a-helipot-1k

6115a-front-view

With the 1 kOhm pot fitted, still no function. About 60 V at the output, and the current limit LED lit, regardless of current or voltage setting.

Looking around inside – a few issues found. There are several uncommon parts, like, a STB523 = 1N4830 voltage stabilizer, which is more or less a stack of 3 Si diodes. These parts are not commonly available anymore, so I replaced the defect regulator diode with a series assembly of three 1N4148 diodes.

1n4830-stb523-1901-0460

6115a-3pn-diode

Found a few more issues, several blown Zener diodes, all around the Q1-Q4 transistors. This is not good, because it may indicate some blown power transistors. And if fact, it did not take long to find out that Q1 has a full B-E-C short, and Q4 is C-B short, E-C, E-B open. No wonder that this disturbed the bias network Zeners, VR3, VR4.

6115a-dead-transistor

The transistors, 2N3442 NPN (Q1-Q3), and 2N6211 (PNP, high voltage power TO-66), at least the latter, not quite common – on order from an xbay seller in Greece, 5 EUR a piece of old and obsolete part, OK!
The power transistor board was an awful mix of bad soldering and flux, finally, cleaned and most of the solder removed.

6115a-pwr-transistor-board-cleaned

Found another defect – no voltage on C8, one of the main capacitors. Reason: a blown trace, from tap 16 of the transformer. Temporary fix with a yellow wire….

6115a-trace

After some repairs, at least the basic voltages and supplies are up and working again, all capacitors tested, and working fine. Also reviewed the regulator board and its voltages (not shown in below diagram, red cross means dead part removed, green cross means part absent but tested good), all is fine and working.

6115a-reg-schematic-annot

Note the working principle of the series pass regulator – it is a dual range setup, with a high voltage regulator, Q1 and the low voltage regulator Q2/Q3, all driven by the common Q4. Diodes CR11 and CR12 (a dual-diode element) is directing the current from the appropriate transformer DC supply (2 equal DC voltages of about 80 Volts are generated from two separate windings).

6115a-two-range-regulator

Apart from a 1N829 0.0005% tempco temperature compensate diode, there is another remarkable part used in the circuit, a 10 ppm 10 turn trimmer – not quite cheap, and still available today!

6115a-trimmer-10-ppm

This is the current state of the instrument, waiting for the spare transistors, before I can put it back together, and hopefully, put it back in service.

6115a-board-top-view

Micro-Tel MSR-902C Receiver: root cause analysis, and a volt meter

Finally, some time to deal with the MSR-902C repairs. After replacing the 7401 TTL, and a 7404 TTL, the band select logic seems to work well, except two bands. This could be traced to a dead transistor on the A3A5 band control board. Still a mystery, what caused all these defects? Tracing the line going to the dead transistor (which appears to be a simple +15 V on/off switch), it only goes to one place – a circuit far inside the receiver. As it turns out, this is a hand-wired circuit, not really a circuit board, but a piece of sheet metal with various solder posts. And, on the other side, two filter. One filter mounted properly, the other tied to it with some thread. As you can see, this holds the filter in place, but it can still move around the other filter – and cause a short on the 15 V rail, including the signal coming from the transistor switch.

902c-moving-filter

902c-filter-short

To avoid similar defects in the future, I put some plastic sheet around the filter, and fixed it in place with better ties.

Finally, time for some alignment of the YIG filter, by using a fairly complex setup, a microwave signal generator, a scope to test the receiver output, etc. – see below picture.

902c-test-setup

The YIG filter needs to be aligned for each band, same for the YTO band edge frequencies. This is all done on the A3B7 board. Not much adjustment needed, fortunately, only some fine tuning of the YIG preselectors.

902c-receiving1

Receiving… quite fun to operate the receiver, easy to tune over the full range of frequencies. Maybe this is what makes it so suitable for detecting microwave bugs.

902c-receiving2

Some last repair relates to the frequency display. It did work in some bands originally, not sure how the defect came about – maybe I slipped with a screwdriver, or some other mishap, or some already damaged part, I can’t tell. But now it only shows erratic values, and without a schematic, it is a tough task to fix it.

902c-voltmeter-board

A fairly complex assembly, keep it mind, it is just a volt meter for the frequency display… so much easier nowadays…

902c-voltmeter

The LED display: hand-wired with Teflon coated wires. Sure, this receiver was never intended for the layman, but for some agencies that don’t care about cost and taxpayers’ money.

902c-handwired-display

After some tests and checks – the voltmeter uses a voltage to frequency/time converter, and a MIC5005 integrated timer! Quite a nice and complex chip for its age!

902c-mic5005c

Two hours later – found the issue. A bad reference diode, 1n821. Unfortunately, no such diode in stock, but it is quite similar to the 1n827, only that the latter is more precise, and more expensive, and only a used part in my bin. But easy to check, just put a resistor in series, and run at about 1 mA, and check the voltage drop over the diode. All good.

902c-1n827

902c-1n827-data

Finally, reception is pretty good over all bands, no detail tests of noise levels done yet, but already now it is clear that this is pretty capable receiver, build with only the best components at a time – just the style is not quite service friendly.

Demodulators work as well, receiving 1 kHz demodulated signal, all looking pretty good and clean.

902c-1-khz-test

Phillips Senseo Coffee Brewing System: the serious consequences of a broken wire

With close to 40 million sets sold, the Phillips Senseo coffee makers are in widespread use in various parts of the world, predominantly, Europe. Also at my workshop, this machine provides the essential supply of coffee. However, recently, this supply came to a sudden and unexpected hold, leaving me in a serious situation – stuck without coffee.

The defect was not related to any of the electronic or electric parts, but to the closing mechanism of the head part. It just would not close properly.

First we need to have a look inside. Using a screwdriver, the lid can be easily disassembled, by prying out the inner part with a screwdriver (needs to be done left and right).

senseo-head-dissassembly2

Inside, a broken wire spring, which is 1.5 mm in diameter, and made from some rather stiff stainless steel spring wire.

senseo-broken-wire

Where to get a spare wire? No 1.5 mm spring wire around here, but an old egg beater (maybe you can use some steel wires of an old umbrella?). So I decided to sacrifice one of its wires to the coffee machine repair.

senseo-wire

Here, you can see the wire installed. It is not quite 1.5 mm thick, but still, it works.

senseo-wire-mounted

After this quick fix, coffee again!

senseo-coffee-again

HP 83572A RF Plug-in 26.5-40 GHz: only a fuse away from the highest frequencies

Not one of the most preferred things to repair – a rather rare 26.5-40 GHz sweeper plug-in, not producing any output. Despite its rather simple function as a signal source, typically, not easy to fix if any of the microwave parts are faulty. New, close to 18 kUSD, so it is nothing you can easily replace from a hobby budget, and 26.5-40 GHz sources are not easy to come by.

40ghz-1

40ghz2

Inside, all full of heatsinks, and a few waveguides.

40ghz-waveguid

The modulator.

40ghz-modulator-45211h-2900h

The YTO. Not many companies around that can manufacture such devices.

40ghz-0960-0670-wj-5610-25

First thing to test, with no output present – the YIG oscillator. This has two main items: the bias supply, which is more or less just a variable voltage power supply which is tuned along with the frequency sweep. Secondly, the main tuning coil current, providing the magnetic field for the YTO. Checked both – and found the bias supply at 0 Volts. No wonder there is no output.

40ghz-a7-bias-assy-schematic

Upon inspection of the schematic, I noticed the fuse, which is rather hidden down on the motherboard. And, it was blown. No idea why – maybe just because of its age? Sure enough, HP did not use just any ordinary fuse, but a BUSS GMW model.

40ghz-buss-gmw

USD 9 per piece – that’s a steep price for a fuse.

40ghz-fuse

Cut the fuse open, and connected a 5×20 mm European style fuse. All protected by a piece of shrink tubing.

40ghz-fuse-replacement

Well, an about 1 hour later, the YTO is oscillating again, and you can see a nice and strong signal, well over 90 dB useful range, to test attenuators, or whatever 26.5-40 GHz device you want to put to test.

40ghz-transmitting

40ghz-receiving-again

Ultra-cheap LED Spot Lights: Failure mode analysis, and some reverse engineering, and some concerns

Something amazing about the advent of LED technology for general lighting is not only the brightness, efficiency, and so on, but also the amazingly low price. Here, 20 light fixtures, including 3 LED elements each, 34 EUR total. That’s a bargain a friend of mine could not resist. But think twice, after about 1 year of occasional usage of these lights – several failed. Brightness is gone, some lightly flashing lights remains.

led-20-pcs-33-eur

Still the price is amazing – considering the price of a singe 1 W LED element, with about 1 EUR retail. Plus the case, heat sink, aluminum circuit board, heat conduction paste, external case, 3 lenses!! No idea how this is made in China, for about 1.5 a piece delivered.

led-1w-led-price

The first suspect – the drivers: each lamp has their own little driver box. Type S3W-0103.

led-driver-case

led-spot-down-light

The parts, and a good quality aluminum board, named CQ-LV8072. This is a universal board, found in many kinds of Chinese LED light fixtures.

led-driver-cq-lv8072-board

Tested the LEDs – turns out, one of the LED elements is dead, and this ruins the whole thing, as all three LEDs are arranged in a series circuit. We can fix this easily by replacing the LED elements, all three, with some good quality elements. Albeit, at almost non-economic cost. Hint – the case and be unscrewed with the heatsink turning vs. the outer case. No need to apply brute force like I did, to open it up.

led-driver-s3w-0103-board

Some reverse engineering reveals a rather simple, but practical circuit. Using S8050 and MJE13003 TO-92 transistors, and a little transformer.

led-driver-s3w-0103-schematic

As you can see, no protection elements, what if the input capacitor shorts out, or if some overvoltage blows the transistor. Could it set your flat on fire? Well, my guess is, yes.

Digital Delay Line: sawtooth corrections of an ultra-precise GPS-reference 1 pps signal, and thermal effects

In an earlier post, I have already introduced the Motorola M12+ timing receiver, which is really a nice and affordable gadget for everyone who needs a precise and accurate time signal. Taking about nanoseconds here. All these timing receiver have something called a sawtooth error, linked to their internal clock. See earlier post: M12 perfect time.

Various methods exist to account for this sawtooth error, first and foremost, correction by software. However, I felt the need for a hardware solution here, to simplify the usage of the 1 pps trigger as a reference signal for phase measurements, and other purposes where the recording of sawtooth correction values would be rather troublesome.
With any such attempt at nanosecond scale, considerable thought needs to be put into the system to avoid introducing any errors larger than those we want to correct. In particular, thermal effects can lead to great long-term jitter, aka, randomly wandering phase.

How can we achieve compensation of the sawtooth error? Well, rather easily, by introducing a variable delay element in the signal chain, and adjusting its delay second by second, to the expected sawtooth error, in ns. Fortunately, the M12+ can be programmed to send out a message, called @@Hn TRAIM Status Msg, which provides, every second, the expected sawtooth error, of the next second. One single command is need to make the M12+ send out this message, very second, from now and forever, until other instructions received, or until the M12+ backup battery is taken out…

See below diagram, a AVR processor is tapping the TxD line, from the GPS receiver, to any host controller or PC (if connected), and whatever messages are send out are checked for the @@Hn message (and @@Ha message, just to display the current time, UTC, and date, on a LCD display connected to the AVR). Note that this works perfectly fine, even when another host, or PC is used to control/read/monitor the M12+. The M12+ uses 3 V logic, but an AVR input can easily handle this as a valid signal, even with the AVR running at 5 V.

dsdelay-rs232-controller2

Glad a processor is doing the decoding work… the GPS messages, a bit too cryptic for me:

gps-messages

Rather than implementing a discrete solution with various delay lines as coax cables, switches, etc, Maxim Integrated provides a marvelous chip, a silicon delay line, DS1023 series, at not marginal, but still acceptable cost, USD 8 per piece.

dsdelay-ds1023-data-sheet

This chip comes in various versions, varying by the delay-per-set, and an 8 bit register, to set the actual delay. Sure, the minimum delay is not “0 ns”, but some odd number, corresponding to the delay of the signal before and after the actual delay line.

dsdelay-data-sheet-2

According to information found in the datasheet, this chip is trimmed for best accuracy, and high thermal stability. Further documents also say that the thermal drift is non-linear, and that no coefficient can be provided. Rather, the delay is specified as an absolute number, over the full temperature range. Well, fair enough, but what does this mean for our present case and actual device under test? With no information available anywhere, it seems, the only way to find out is to measure it. The datasheet maximum error would be a bit more than we want.

dsdelay-data-sheet-3

The schematic is nothing to write home about, a 74F04 is used to buffer the input signal, and a the same F04 is used as an output buffer, providing a nice and fast-rise (or, respectively, fast-fall) 1 pps signal.
The only specialty, a thermistor, and two resistors epoxy-glued to the DS1023-50 top surface! This can be used to heat up the device rather quickly, to 60 degC or more, by providing power from a regulated DC power supply.

dsdelay-schematic

Note the heating element and the thermistor (a rather small, fast response, 100 kOhm NTC) – red frame.

dsdelay-board

The test setup – to measure the temperature effects, is running without the GPS, but with a ~1 kHz fast rise-time pulse, from a HP 8012B pulse generator. Both input and output are connected to a HP 5370B Timer Interval Counter. The latter is a great device, single-shot accuracy of 20~30 ps, if you are into any precision timing tasks, very much worthwhile to get one of these, or a Stanford Research Systems SR620. Time intervals are then recorded as averages of 1k measurement, giving very stable readings with high resolution, certainly to 0.01 ns. For the test purposes, the AVR monitoring the RS232 signal can also be programmed via USB, to set any delay value from 0..255, corresponding to a 0..128 ns delay, plus any baseline delay of the gates and the DS1023-50.

dsdelay-test-setup

dsdelay-5370b-measuring

All connected to a PC via GPIB, and recording the delay values at various settings.

dsdelay-recording

Rather than many words, please inspect these diagrams, which will give you a feeling of the delay and drift to be expected with temperature cycling of the device at various rates (slow cooling, fast heating, slow heating, etc.). These were all recorded at the maximum delay, register set to 0xff, 255. Diagrams show delay, in ns, vs. time, as MJD.

dsdelay-temp-effect

dsdelay-temp-effect2

In absolute numbers, 152.1~152.7 ns variation. Not much. About 1 step. So maybe good enough, and no need to apply any temperature compensation, or to put everything into a thermostated box.

HP 8566B Spectrum Analyzer: A19 board, YTO unlock, bad precision trimmer(s)

Not the first HP 8566B on the bench, and not the first at all showing the famous “YTO unlock” message. Most of these YTO unlock message issues can be traced to defective capacitors, but not this time.

With the 8566B, take my advise, don’t touch any of the assemblies if you aren’t really sure which one is at fault, it is a fairly complex machine. To troubleshoot, a microwave counter is handy, to check the LO frequency.

8566b-repair

Next, the PLL was disengaged by disconnecting the cable from the sampler/LO pll. Still, no good LO frequency output. This leaves two main assemblies to be checked, the LO pretune DAC, and the YTO driver assembly, A19 and A20, respectively.

Quickly traced the issue to the A19 DAC assembly, and luckily enough, had a spare one around, albeit, an older version. After swapping the boards, it was confirmed that the A19 assembly is really the faulty part.

8566b-085660-60164-a19-brd

8566b-085660-60212-a19-brd-old-version

Next – desoldered all the capacitors at one end, but, to my surprise, all useless work, all caps in best working order, even after 25+ years!
Checked various components, and finally, found some issue with the precision trimmers – seems a cold or aged solder joint. To be sure the the fix is as permanent as possible, all the trimmers were removed, the solder connections cleaned, and all installed back in. Easy fix, all working again.

With this unit, there was no intention to do a full calibration, but as an extra service, I checked the power at the reference signal outlet – see below. Quite amazing how accurate, and pretty sure that this unit hadn’t been at a cal lab for at least 15 years….. this is really a superb level of lasting precision and quality, and ingenious engineering.

8566b-pwr-ref-test