Fake DAC8512, AD8512, Mixup, or both?

The semiconductor industry is quite a bit plagued with counterfit parts, and there are all kinds of variations – plain fakes, parts that work similarly, parts that are actually true and real silicon dies but packaged by someone else, relabeled parts…

Troubled with these parts – clearly marked as DAC8512…

So I took a file and some patience to cut open the thing, until the bare die came to light.

Not easy to read on the picture – but my eyes are still good enough, clearly, there is the Analog Devices logo, and a marking, 17012, AD8512A.

Is this real? Did someone package AD8512 dies (probably sitting around in a box for some time, rejects or aged stock) and then put a DAC8512 label on then?

Found this picture on the web, of a genuine AD8512, decapped by a professional company – clearly, the same die.

No wonder I couldn’t get it to work as a DAC…. It is an opamp.

GHZCTRL6: a new GHz-PLL control board, and a few learnings when prototyping with cheap (fake!) parts

Recently, we have to work with many PLL designs, mostly the frontends, based on ADF41020, ADF5002, ADF4157 and similar circuits, including their programming. So I decided to design a little board that can flexibly interface to all these circuits, and provide enough power.

(1) Power supply to allow 10 V full scale output, 5V supply, 3.3V (or 3V) design. Noise should be low and flat without any discontinuities or peaks.
(2) A pretune circuit with 12 bit monotonous tunable voltage, scaleable to 0..10 Volts to control the main coil current drive of YTOs.
(3) A PLL loop amp to adjust the working range of the PLL FM tune (PLL circuit may provide 0-5 V, but need to have a driver to translate to, say 0-10 V). Used an ADA4048-2 low noise rail-to-rail opamp. These are reliable, and can tolerate somewhat capacitive loads like long cables.
(4) An isolated RS232 (TTL level) interface that can work at any reasonable baud rate (7.3278 MHz will do the trick as MCU clock).
(5) Easily in-circuit programmable, we use a common ATMEGA8L-8 MCU.
(6) Some status LEDs. Say, 3 LEDs.

After not too long, came up with this design and had it manufactured as boards at 40 eurocents a piece(!).

The schematics, they are a bit rough, but if you need more detail, let me know. All fairly standard. The regulators are good old LM317T, with 10 uF bypass caps. This gives reasonably low noise, and we can operate this without special cooling over a wide range of input voltages (15-20 VDC). Current consumption incl. LCD is about 40 mA.

The LCD, any common LCD board will do. I use a 1602A 2×16 character.

After some fiddling around, it is working temporarily. Programmed the ATMEGA8 just fine.

The LCD, it took some in-circuit repairs because after a short time of operation the contrast faded away. Note that this is a 3.3 V LCD that has an ICL7660 to convert +3.3 V to -3 V. But not with this module, just getting about -0.2 V. After replacing the ICL7660, it turned out to be a shorted capacitor (tested 10 Ohm!).

With things working pretty well, soldered in the SMD DAC, a DAC8512 (DAC7761 also works with same pinout and performance). But rather than the expensive parts for production sourced from major distributors, resorted to some low price parts purchased in sets of 10 pcs, and at hand here in my temporary Japanese workshop. Did do much D to A conversion, but rather shorting the inputs to almost ground and consuming lots of power. Not good. Some forensics showed that these are certainly not DAC8512, but something else (with diodes and circuits inside) marked as such. Strangely, from the same reel/cut tape, there are Philippines and China made parts, all a bit scratched and strangely smelling like fake. The laser marking are all the same.

Markings on the Philippines parts:

Markings on the China parts:

I have some genuine parts back in Germany but no picture handy currently. Well, I ordered some more DACs to get this to work, but won’t be an issue, the amplifier is working just fine.

HP Attenuators: another great method to fix them

Thanks to a kind contributor there is a new way of fixing the HP step attenuators that are ubiquitous in the various HP and Agilent generators, analyzers.
These attenuators exhibit some common failures modes-

(1) blown pads – fix by replacing with pads from good donor units. Keep in mind that even if the pad value is the same, there are pads of different geometry/length!
(2) mechanical issues with aged O-rings, easy to fix, best use some FKM O-rings
(3) the broken-off contact fingers, difficult to fix unless you have some precision equipment like a good milling machine or fine drill.

Here is an alternative way to fix it – use some two component epoxy glue after removing the remaining plastic parts from the contact finger by heat (heat gun or hot plate, about 200 degC).

To ensure a permanent repair, a piece of FR4 is affixed with epoxy glue. Sure enough this is not quite ideal for high GHz frequencies, but no problem up to 2 or 3 GHz.


HP 856x and 859x Series Spectrum Analyzer: Rubber keypad issues with 8561e 8562e 8563e 8593e 8593e 8596e, etc.

The famous and still very common HP 856x and 859x analyzers come in two versions of keypads, the earlier A, B models have hard-plastic buttons that go to individual switches, while the later models feature rubber keypads. Sure such rubber pads are good to touch and easy to use, however, very commonly they develop issues over time for these HP instruments, the buttons will eventually only react to the strongest push, making the analyzer bothersome to use.

Having fixed many of these, here the instructions how to fix the issue, and the repair seems to hold up well (some instruments already fixed 8 years back still good today).

To remove the keypad, you have to take off all the front panel, carefully disconnect the SMA connectors, and make sure not to damage the power cable. Best do it on an ESD surface, or other non static surface like an old moist carpet, a piece of cardboard, or wood. Make sure all is clean (this instrument doesn’t tolerate cut-off wires and solder droplets inside, floating around on your workbench).

Disassembly proceeds with some good screwdrivers.

The keypad has some extensions, these must be pushed out, don’t pull off the keypad from the front!!

Soak the whole rubber in 70% Isopropyl alcohol (I take 99.9% and mix with distilled water), good enough to soak for 5 minutes at room temperature, then just take it out, dry overnight on a paper towel, maybe cover it up with some paper if you are in a dusty workshop.

The board with the gold contacts, I first wash it with 99.9% isopropanol, then use an abrasive sponge (ultrafine), to give it a light polish, just one stroke, at an 45 degree angle over the contact area, and another stroke prependicular to it. Don’t scratch off the gold! Afterwards clean and polish a bit with a paper towel and pure isopropanol. Let it dry overnight.

Then, after assembly (don’t overtighten the SMA connectors, don’t squeeze or damage any of the cables, don’t use force on the boards), all will be good.

Working like new, how pleasant to use!

HP 8566B Spectrum Analyzer: lock and roll issues

With the 8566B main issues fixed, I carried out extensive tests, also switching it on and off many times, running it for a while. So far so good. With all the tests, discovered only one issue, unstable display for spans above 5 MHz.

The instability is difficult to see on the picture, it is a bit random, and at slow sweep, the trace becomes very wobbly and noisy. Jumps around. The common suspects are the A19, A20, and maybe A21 assemblies, these control the YTO. There are various capacitors on these boards that may fail or leak. Or some dead bits on the DAC, or similar. A bit strange that it works so well below 5 MHz span – isn’t it? Not really, because the 8566B has a different mode of operation, depending on the sweep width. Below 5 MHz, the LO stays locked all the time, above, it is only locked at the start of the sweep, and then the YTO is swept just be increasing the tuning coil current in a linear (and linearized) fashion.

After considerable study, probing, checking capacitors, including desoldering some – no success. Some more checks, solder joints fixed, finally, so occasional improvement. Touching the assemblies A19, A20, some response.
From that, suspected a contact issue with the board edge connectors, and indeed, these were not very clean. So I gave them a thorough treatment with polishing cloth, rubber erasor, alcohol. Reseated the boards, A19 and A20.

Finally, the sweep is very stable. Seems a lot of unnecessary concerns about capacitors and such, but well, finally, fixed. Screen shows a reference (stored) trace with slightly below 5 MHz, and a longer time max-hold display, slighly above 5 MHz span. Clearly, not much noise and instability. All looking good.

HP 8566B Spectrum Analyzer: Defective and fake transistors, and finally, a HP 4-404 equivalent

Recently, I got a HP 8566B at very low cost, unknown working condition of course. First, it would not power on, at least not fully. Some activity on the 8566B, but no display at the 85662A display unit.
Clearly, next step, to open it all up and do a good survey. Quickly found the issue in the 85662A power supply board. While all the other boards where good and clean, the power supply boards are directly in the airstream and showed some leg corrosion of transistors. Especially, 2n2369A transistors, and the famous 4-404 HP transistors (not that the 4-404 is anything special, but there are no replacements mentioned by HP.

Recently I found in some late 8662A boards that HP subsitute the then obsolete 4-404 with a MPS6521, a high gain NPN transistor. So I did the same and put in BC337-25 (-40 may be a closer match but not at hand here).

With these fixes, the 8566V turns on just fine, but it doesn’t turn off well. The 5.2 V rail goes high a little, and then nothing happens, no power down, when you switch the analyzer off. So measures all currents and voltages in the 5.2 V supply, and finally traced it to a defect of the main power transistor, a 2n5886 equivalent power NPN transistor in TO-3 case.

Checked it out internally, the defect is actually within the area of the bonding wire connection. So the transistor became better, non conducting, once I pulled of the bonding wires and measured directly on the die.

Quickly ordered some 2n5886 from China, a bag of 5 for less than a dollar a piece including shipping. Well, you get what you pay for. Look at the small die, the missing plate (die is directly bonded to the steel case, the bonding wires much thinner).

Doesn’t look like a genuine ON brand device, even the marking is not in accordance to the datasheet.

For comparison, the HP-Motorola part:

Tried to fix it with a 2n3055 temporarily, but it turns out there is not enough gain with that transistor. So the rail would only go up to 4 Volts.

The 2n5886 is a quite remarkable device, high current and substantial gain.

Finally, I got hold of this “Motorola” device, it may be genuine, at least it looks like solid quality. So I unstalled it for a test.

You can see it installed, a new and shiny transistor. Soldered it in generously applying solder.

Voltage is spot on without any adjustments.

Now all seems to work, except the various IF filters need a bit of alignment.

Although they are brittle, for these adjustments ceramic screwdrivers are definitely handy. Make sure to isolate other screwdrivers, easily there can be shorts when adjusting, resulting in complicated repairs of the IF signal chain.

Finally all adjusted within the toleraces, there are all too many adjustable capacitors inside this unit!!

At least, a well worthwhile repair, because the CRT is like brand new. It seems that someone had replaced it, but then put very little further use on the unit. I plan to use it together with my microwave phase noise measurement installation, for rough characterization of microwave sources prior to engaging the complicated phase noise test gear.

HP Attenuator 33321SB AKA 33321-60026 ATTENUATOR: fixing a defective spare part

After some consideration, I decided on the fix of the the 33321SB attenuator. The defect – the plastic of the grey holders broke off, probably, a matter of age and a matter of stress in the special construction of the 33321SB with the side connector.

It is not the first attenuator that has such defect, so it seems to be a certain weakness of the HP design, albeit, a weakness showing up much after the design life.

Originally, I planned to fix it back home in Germany, with some precision machine tools – drill two holes, fit/glue two plasic rods, and the mount it in the original fashion. But currently, it is uncertain when I can go to Germany again, so I decided on an alternative fix. There are several unused HP attenuators around here, so I checked their internals for a contact of the same design (length). Take care, there are many different configurations of these attenuators that all differ in the length of the contacts, the distances between contact, and so on.

Found a good donor – now, cutting the piece with a razor blade.

The part is obviously fragile, better don’t touch the contact.

After assembly, it seems to work well and fits well. To avoid further risk of breakage, added some 2K epoxy glue underneath the metal spring – it is not visible on the picture. So I hope it will be a permanent repair. Otherwise, we will fix it again using better tools and methods.

With the spare part repaired, and installed in the 8662A, the generator is working well again, at all power levels.

Motorola 2N5160 PNP RF Transistors: new-old-stock, medium old stock, fake stock?

Some of the 1980s, 1990s pulse and signal generators use push-pull power amp stages to provide output levels of +-10 V into 50 Ohms, and similar. These are often discrete circuits, utilizing PNP-NPN small power transistors. While the NPN types are still widely available, there used to be some shortages of 2N5160 PNP transistors. Recently, there are are many offers for “Motorola” branded parts, with datecodes from about 1998 (K98xx) to about 2004 (K04xx). In contrast to the earlier Motorola parts (Rxxxx date codes), these have shiny cases. It is quite unlikely that Motorola actually manufactured RF metal can transistors in 2004… (1999 onwards, Motorola no longer made transistors, but transferred the business to ON Semiconductors).

Strangely, the cans have “KOREAN” stamped into them, in various styles and sizes. Would a fake producer have stock of many different kinds of fake cans? Or did ON Semi produce these parts with some existing stock from the 1990s? Many semiconductor producers actually have decade old wafers in stock that they package whenever there is a need.

Let’s have a closer study. Unfortunately, no electron microscope here. But we do our best. Here the die of the defective HP branded original Motorola part. Red arrow shows the burn mark, defect area.

I sacrificed one of the 0.7 USD suspicious parts with K0439 datecode. To my great surprise, they are exactly identical in die, bonding method, and die attachment method.

A quick function test – put the new K0439 date code 2N5190 into an 5 MHz power amplifier. And working just great at >20 dB gain and about 1 Watt output.

Further, we study the collector-base capacitance, at -28 Volts bias U_CB (note that some datasheets specify “28 Volts U_CB” but this won’t work with a PNP transistor – it is conducting like a diode in C-B, if the collector is positive vs. base).

A test with the trusty HP 4192A, and 2.5 pF measures. Exactly the typical value. Also checked one of the certainly genuine Rxxxx date code transistors, and this measured at about 2.7 pF.

Test done at 1 MHz, and calibrated the 4192A with open and short.

So far, so good. All I can say is that these transistors are good 2N5160, whoever made them.

A low frequency xtal oscillator: Austrian generosity, gold, and crystals

A while ago, an Austrian fellow contacted me for some collectibles, long-range telephone line filters (from carrier multiplex phone lines). Many decades ago, phone lines were used at some 50-100 kHz frequencies, to transmit several (!) calls per wire pair. This required good filter, quartz filters were commonly used.

These are 4-electrode filters that are held only by 4 wires soldered to it. Probably oscillating in some flexing mode.

The electrodes are normally connected diagonally, and with a few resistors and an amplifier, I got the part to oscillate nicely. Be aware that you can’t feed a lot of power to these crystals, so it needs a rather high impedance oscillator circuit.

Resonance is at about 50 kHz.

Also connected the specimen to a HP 3562A analyzer, in swept frequency mode, and good nice response plots. There is another dip at 100 kHz!

The schematic, pretty simple, using a 74HCU04 unbuffered inverter, it is a very handy circuit, and years ago I got several tubes of these… you may use any other type of amplifier, gate, or even transistor circuit to get any such xtal oscillating.

Also did some some study on the temperature effect – heated to 100 degC, the frequency dropped by 200 Hz!

HP 8753C Network Analyzer: a new old YTO, and a new old firmware

After another trip to Germany, another HP 8753C to fix. This unit had option 020, 006, a 6 GHz unit, but there is no 6 GHz test set.

First, we need to get a suitable YTO, found a good ASF-8751M, from Israel. Cleaned it up and gave it a proper test.

It is a 4-8 GHz unit, but I easily got good power down to necessary 3.6 GHz. It is a well-behaved unit, with reasonable power consumption running of +15 and -5 Volts. The heater may be better run with 24 Volts, but there is only 15 Volts in the 8753C, and it is good enough it seems.

Some modification of the PLL board, as described before, to approximately double the tuning current, installed a 20 Ohms sense resistor, and installed a BD249C transistor on a good heatsink.

A quick drawing of the heatsink, should you need it. Use 1 mm aluminum sheet. Don’t cut yourself, when cutting the metal!

The YTO, installed in the veritable source assembly. Pretty confident that this will last for a while.

This time, all worked well and the pretune correction functioned immediately, no further adjustments needed. Phase lock seems very stable at all frequencies, scan rates, and band transitions.

Out of curiosity, did a phase noise test of the 8753C in CW mode (fixed frequency mode), getting well below 100 dBc. Pretty good. Maybe better than the original YTO.

For the current unit, I also wanted to update the firmware, and install the 010 option (time domain analysis). The option installation (and EEPROM backup), done like described in an earlier post, but desoldering the EEPROM, and changing three bytes…

The unit is still running pretty old firmware.

Should be easy enough to program some 27010 EPROMs, but the devil is in the detail. After a number of incorrectly programmed EPROM, finally figured out the once of the CD4015 CMOS of the EPROMMER had failed! Fortunately, I had some in stock to fix it.

After these efforts, the 8753C is starting up with the latest (albeit, dated) firmware, and all options.

A few tests with filters and such, a very useful and well working unit. The CRT also very good, no need to install a LCD.

SimonsDialogs – A wild collection of random thoughts, observations and learnings. Presented by Simon.