Tag Archives: M12+ timing

Perfect time: upgrade to a Motorola M12+ receiver, and new GPS antenna

For years, a Motorola UT+ GPS timing receiver has served me well as a frequency reference and source of accurate time (and location). While I primarily use a DCF77 locked 10 MHz OCXO, the GPS time is useful for various purposes, be it, to confirm that DCF77 is actually delivering the proper time.

One drawback of the Motorola UT+ is the rather large “sawtooth” error, which is caused by the quantization of the 1 pps signal derived from a 9.54 MHz clock. This results in a +-52 phase inaccuracy – which can be corrected, but only with further effort.

The later model, which is dated by now and available at low cost, the Motorola M12+, is much better in this respect, featuring a +-13 ns sawtooth, which is not a lot, and good enough for most purposes without any further corrections.

Below, some tests on an OCXO vs. GPS 1 pps pulses, for a OCXO under test (10 MHz, divided down to 100 kHz, and phase displayed in microseconds).

ocxo-vs-ut

ocxo-vs-m12-100ns

This is the small board, not a thing of beauty, but working. The only parts needed are +3.0 V and +5 V (actually using +4.4 V) voltage regulators: 3.0 V for the M12+, 4.4 V for the GPS antenna.
The 3.0 V also powders a MAX3232 TTL to RS232 converter.

m12plus-board

Also procured a second-hand GPS timing antenna – this one has a nice radome, a quadrifilar helix element, and a 26 dB amplifier to compensate any cable losses. The cable, LMR-195, features N to SMA connectors, and a considerable of PVC tape was used to protect the N-connector from the elements. Still it would be better to use some special outdoor N connectors, but, sorry, don’t have.

m12plus-antenna

m12plus-tac

A handy program to control the GPS – TAC32. Usual procedure is to carry out a location survey, which will take about 2-3 hours, and then continue in position hold/timing mode.

One drawback of my location – there is no way to get full 360 deg view, so reception is limited to the more southern satellites. But usually 6-8 satellites are in sight.

Still contemplating if it is worthwhile to put this in a larger box, together with a 10 MHz OCXO, and possibly a DS1023-50 delay line to implement a hardware sawtooth correction. Maybe a good project for winter time.