Tag Archives: noise source

TWS-N15 Noise Source 10 MHz-2 GHz: a few more sets

Coming back to an earlier post, Noise source design, I wanted to post the final results, and the looks of these noise sources.

The case is an aluminum extrusion design, and the lids are milled to accomodate the BNC and SMA connectors. The SMA is a really high quality connector. No point in using a noise source with a cheap connector – you are normally going to connect and disconnect this often.

The constant current supply is optimized for the maximum noise output, normally, about 8 mA. The design is a current mirror, with a TL431 precision reference.

The noise section is soldered with 0603 SMD mostly, on a FR4 board.

Foam and copper tape to avoid any foreign signals getting into it. Spurious signals can mean big trouble with noise measurements.

Return loss, I think it is pretty good.


After some optimization of the circuit, the ENR output is now pretty flat, even with no specially expensive noise diode.

After all, pretty happy with the device, and others are happy two, as I give them away at low cost. If you need one, let me know.

TWS-N15 Noise Source: checking out some design alternatives

So far, we have mainly been discussing series type noise sources, i.e., noise sources where neither anode nor cathode are connected to ground. Another common design is shown here – the shunt configuration (one port of the noise generation element grounded).

noise source bfr93a shunt

The assembly, more or less just a little blob of solder with a few tiny parts inside… mostly, 0603 SMD format. The output attenuator (not shown) is a 14.5 dB(!), 18 GHz coaxial attenuator.

noise source bfr93a shunt assy

Some quick measurements, at bias currents of 2.5, 5 and 7 mA…. still, there seems to be a lot of 1/f noise (increase of noise power at lower frequencies). This is model #1, with a 22 nF capacitor (see schematic)

noise bfr93a shunt configuration 1

Don’t really see any advantage over the series variant of the noise source. But will test further.

…Progress on another front, ordered a set of PCBs – they can be used for various noise source configurations. Not yet a “prototype”, but need to see what kind of GHz performance is available from such design, and how reproducible it is. No current source yet on this PCB – will add later, or on a separate board – to limit shielding to the RF section.

noise source pcb 150827-2

TWS-N15 Noise Source: noise generating elements

Some trials with various low-cost noise generating circuit elements:

(1) Zener diodes
(2) Transistors B-E junctions in break-down mode
(3) Noise diodes – these are not being considered, not low cost.

For (1), a BZV55-12 diode was used, directly soldered on the traces of the noise source circuit described earlier.
For (2), as a first try, a BC238B transistor was used (with legs cut to very short length). Sure, I will try some RF transistors, but these are all back in the main workshop in Germany and will come over in a couple of weeks.

noise bc238b lin

noise bc238b log

The output, measured with a HP 8970A noise figure meter and some GPIB software to do this efficiently, it shows quite interesting behavior.

For the Zener diode, there is appreciable 1/f (pink) noise at <30 MHz, but the output is pretty much flat at higher frequencies. The transistor, well, it is working fine at lower frequencies, at 10 mA bias, the noise is flat-white up to about 300 MHz. But not enough noise at higher frequencies - maybe just not the right part for this purpose. These are just a few of the components tested, stay tuned.

HP (Agilent Keysight) 346B Noise Source: finally, a calibrated ENR standard, and a temperature compensated current source

Today, a rather ordinary envelope arrived, still it feels a bit like xmas, because of the contents….
346b envelope

…. a HP (Agilent Keysight) 346B Noise source, with nominal 15 dB ENR. I have long been looking for one, at a reasonable price, and finally scored this unit on xbay.


The calibration sticker shows good flatness, especially, in the 0.01-1 GHz region, which I need most, it is perfectly flat.

346b enr cal

Prior to having it re-calibrated, a good opportunity to look inside. There are two sections: the current source, and the RF noise source assembly (which is hermetically sealed, and you better don’t touch!).

346b parts

These are some close-ups of the 00346-60001 power supply and current regulator board.

346b top side

346b bottom side

The current regulator inside of the 346B has always been a big mystery to me, because no schematic has been published by HP, in any of the service manuals. How it works, check out the schematic. The incomming 28 V (which is provided by the noise figure meter) is converted to a square wave, about 7-8 kHz, using a LM311H comparator. This is then converted to a negative voltage, about -20 V, absolute value varies a bit with loading condition.
The negative voltage is then used to sink current from the noise source assembly. The current setting of my unit is about 18.7 mA, programmed by the “10 Ohm” resistor.
Why the negative voltage? To simplify the design of the noise diode.

00346-60001 346B noise source schematic

Why did HP use a 5V6 Zener for the current reference, well, this is fairly obvious, when looking at the datasheet of such diodes.

bzx85 zener data

Around 5.6 V, the temperature coefficient virtually vanishes (this is why such voltages are also used for voltage reference circuits). The other Zener diode, unfortunately, I was not able to identify. It has 24 V drop, fair enough, any regular Zener should to the job to keep the base bias of the output constant.

For a quick burn-in, the source has now been connected to a 8970A Noise Figure Meter, and output appears to be very steady, less then 0.1 dB drift over a few hours. More noise measurements and calibration tasks to come, let me know if you need any noise sources measured, might be able to help.

HP (Agilent Keysight) 8970A Noise Figure Meter: a makeshift noise source, and some test

With the 8970A back working, what would be the first thing to do with it – well, let’s measure some gains and noise figures. Unfortunately, the 8970A alone won’t be sufficient, because it uses a small, external noise source unit, commonly refered to as a 346A, B (or C model, if you need noise up to 26.5 GHz). These sources are still widely used, although Keysight has introduced a new series, the N4000 series, but still the 346 models are very common, and available – this product has been around for 30+ years, not bad. The only downside – most of them seem to get lost or damaged, so they are rare on the second hand market, at least, if you don’t want to pay more then USD 0.5k for a used, out of cal, and scratched item, for a device that sells for USD 2.5k brand new.

Key characteristics of a noise source for noise figure measurements, and related tasks:

(1) The connector, preferably, get a 3.5 mm APC, then you can add a connector saver, and most of the small devices being characterized are SMA or 3.5 mm design; sure, have a few adapters at hand, or a SMA to N cable. A noise source with N connector is more sturdy, but also these connectors wear out, and aren’t all that hand except for directly connecting the noise source to the analyzer, which is not often done. Typically, the device-under-test (DUT) is connected with some short test cables anyway, and for calibration, you just remove the DUT, rather than all the cables.

(2) Flatness. The noise output needs to be so-called white noise, absolutely flat with frequency.

(3) Related to flatness, very low SWR. The various common DUTs, amplifier, mixers tend to have not too good SWR, so at least the noise source needs to have low SWR, otherwise, measurement errors will be enormous. Also, the SWR needs to be close, or the same, irrespective of the on or off state of the noise source.

(4) Well-known absolute noise power, measured in ENR, which is noise above a 290 K floor, -174 dBm/Hz (a 1 Hz bandwidth power density). 290 K is the Kelvin temperature of an average antenna on the surface of an average place on earth. Well, where are these average places that are at these constant 290 K…

(5) The driver input, commonly, a BNC connector that is driven by a 28 V DC signal. Most sources adopt this style of input.

This is one of these desirable items, in the typical used condition. Very similar device are available from Anritsu, NoiseCom, and others. The 346B has 15 ENR output, which is a good amount for general purpose application, maybe a bit too much for certain GaAs preamps, or other low level low noise applications; then you can just add a good (really low SWR) 10 dB attenuator.
346b noise source used

…unfortunatly, I currently don’t own any of these extremely broad-band calibrated and well-working sources, and need to deal with less fancy apparatus, but let’s at least investigate what it is all about.

The block diagram (taken from the April 1983 issue, of the HP Journal, http://www.hpl.hp.com/hpjournal/pdfs/IssuePDFs/1983-04.pdf, shows the internal construction, still looking for a schematic of the current source, it seems to convert the positive 28 V signal, to a negative current, looking at the polarity of the noise diode. Maybe more about this later; to get proper accuracy and repeatability, it is a must to have a very constant bias current supply, on the order of 8 to 10 mA. It should provide a low noise DC current, without any large buffer caps, because the 8970A will switch it on and off periodically, to do the actual noise figure measurement. But there plenty of circuits around to accomplish this.

346b noise source block diagr

Most interesting, the matching network. Noise diodes have about 15-30 Ohms impedance, so this all makes sense. The strange stub is one of the secrets (the major secret) that ensures the 18 GHz flat output. The 6 dB attenuator improves the output SWR and SWR change from on to off condition. In fact, it is a good idea for any noise source design to have a high quality attenuator at its output, with at least 6 dB, or a bit more.
346b noise source matching

To replicate the 346B design, or at least a similar design that is good to a few GHz will remain a venture for future cold winters (good designs have been published by others but they all appear to lack flatness, and some use pretty costly noise diodes, and all need calibration that is not easily achieved unless you have access to a calibrated source).

For work demanding less accuracy, many design are pretty suitable to get reasonably flat noise of the desired power, in the 10s to 100s of MHz range.
This is one of the circuits that I have successfully employed.

simple rf noise source

It uses the breakdown of the emitter-base diode, according to the datasheet, about 5 to 6 Volts for any common NPN transistor (minimum values, actual breakdown might not occur up to 8-10 Volts). The noise source currently in use has a BC238B transistor, because it was the first one to grabbed from the junk box. Others will work as well, including BC107, BC548, 2N2222, 2N2904, and so on. The latter two appear to have a higher breakdown voltage. Obiously, there is no bias current regulator, and the 5k6 resistor will need to be adjusted to get the right level and flatness of noise in the desired range of frequencies. Sure, better results can result from a RF transistor like the BFR93, or other 4 GHz, or even 22 GHz type transistors – will give it a try back home in Germany because it really only makes sense in a proper RF setup, and on a small test board.

noise bc238

A quick test, to determine the gain and noise figure of a 6 dB attenuator. Attenuators have negative gain, equal to their attenuation value, and increase the noise figure of a system by the same magnitude.

8970a 6 db atten test 2

For the time being, let’s call it close enough. With the simple noise source, calibration works perfectly fine from well below 100 MHz, to above 1 GHz, making it suitable for various general purpose application.