Category Archives: Test Equipment Repairs

For some, it is like solving crossword puzzles: fixing defective test equipment. Preferably, mid-70 to early 90s vintage.

HP Agilent Keysight: missing instrument feed mystery

There is one thing that has always been inriguing me: why are most of the HP Agilent intruments that I am getting my hands on missing feet?

missing instrument foot

This is a picture from the recenty fixed HP 8782B. It has 3 feet installed, 1 missing –
HP Part No 5040-7201, 5041-8801, about USD 14 (each!) at Keysight.

Maybe, some sellers take them off, and sell them separately at xbay – same what is happening to the manuals. And in fact, some offers are posted, but by no means enough to explain all the missing feet everywhere.

Also, if equipment is rack mounted, sure, the feet are taken off and stored somewhere in a drawer at one of the big test labs army bases or corporations, but many of the intruments have never been rack-mounted…

Maybe some of the test engineers just can’t let go and hold back at least one of the feet! Well, I’m glad they don’t take out one of the transistors…

hp instrument feet

So in the end, if you happen to find a bag of these somewhere, please forward them to me…. to put them back where they belong.

HPAK (HP Agilent now Keysight) 8782B Vector Signal Generator: an easy fix

The 8782B is a quite powerful generator to simulate digital signals, not considering the power in dBm, but the support of all the common digital modulation schemes, BPSK, QPSK, 8PSK, 16/64/256 QAM, at exeptional signal integrity.
Frequency range is 0 to 250 MHz, actually, it works to 370 MHz – but this instrument is mainly intended to generate complex IF signals, which can then be used to test the IF chain of a receiver, or, you just add a mixer, another generator for the LO, and a filter, if needed, to get the signal up into the GHz region.

This unit arrived in a HUGE box, it just fits the car!

All frequencies are derived from a HP 10811E ovenized oscillator, which is held by a shock-absorbing mount, and is extremely stable (better than 0.5 ppb per day!), and low phase noise, resulting in below -125 dBc at 1 kHz from the carrier, and below -130 dBc further out.

The symptoms:

(1) The right LCD display is missing partial digits. Seems to be related to the mounting/contact of the LCD with the board.
8782b display defect

(2) Output is 30 dB down, but otherwise working just fine.
Quick look at the output amplifier – a real marvel of RF engineering.
8782b a10a2 output amp assy

(3) It’s in good condition, but will benefit from a bit of de-dusting and cleaning.

The repair:

(1) After taking off the front panel, the LCD is a separate assembly, seems to be made by HP (which test equipment company would nowadays still make their own LCD displays?), and easy to remove. And, the defect, readily found. One of the side bars holding the assembly together and pressing the glass display to the control board, to make contact via an elastic strip, it had slipped off. The root cause – somebody must have used nail clippers to fabricate a piece of acrylic that is used to protect the LCD surface – maybe it was broken or scratched. And with the uneven edges, it caused tension on the display unit, pushing off the side bar.
8782b display protector
Well, Let’s just straighten out things and put it back together. No surprise, the LCD is working again just great.

(2) The level control. According to the description of the sender, the output is about 30 dB down. Most likely, something with the attenuator, 08780-60093 = 33322GC, 110 dB, 10 dB step. So, the attenuator, easily removed, and the non-attenuated signal directly fed to the dated but very trustworthy HPAK 8565A spectrum analyzer available here at the bench. Now there is plenty of signal, but it isn’t accuarate at all, even relative steps, like 1 dB steps, give variable response, anything from 0.5 to 2 dB steps… The level spec of the 8782B isn’t all that great, but I know from earlier work with such units, the performance is much better than spec, and 1 dB step, should be 1 dB. Turns out, just a little pitfall, the 8782B has a calibration routine, also for the level, and somehow, this unit seems not to have been calibrated for a while. Well, easy enough, just pushed the “CAL” button, and after a few minutes, you bet, the levels are spot-on, and, within 0.1 dB or so.
Just a quick fix on the attenuator control circuit, and, the level is back.

(3) For cleaning, don’t use anything too harsh on these instruments, they use different plastics and pains compared to earlier HP models. I get good results with about 20-25% isopropylic alcohol (1 part of the alcohol, 3 parts of distilled water).

Some quick tests – all self tests passed OK – and here, a BPSK signal:

8782b bpsk test

Level accuracy, all well within spec (measured with a Micro-Tel 1295):
8782b level accuracy test

And, with the 8782B the boring times in the lab are over, Thank’s to the build-in game – everyone will be looking at you, working hard, pushing the buttons!
8782b special function 600 game

HPAK (HP Agilent now Keysight) 3562A: power supply repair

Somehow, all 3562As in the Greater New York City Area seem to fail these days… This one arrived completely dead. Didn’t take a long time to find the issue – a defective A18 power supply assembly.

This power supply design can only be recommended to anyone interested in electronics. It is build with multiple controls, overcurrent, overvoltage protection, and build quality-robustness is not far from being able to power life support devices, or moon landing vehicles from from. Still, this one had failed.

A quick look at the board revealed two blown resistors. Framed red in this snipplet of the schematic.
3562a pwr supply schematic

However, these are the gate drive resistors – there must be a reason why they failed, and this reason was quickly found in the MOSFETs, Q400, Q401, HP part number 1855-0473. Looking around, no real equivalent found in the HP cross reference table. However, an IRF450 (500 V, 12 A, 150 W) appears suitable, and 4 pieces (2 spare, just in case) were easily sourced.

The resistors, R404 and R410, are of more concern. CMF60-64 type. These are 0.5 W resistor fuses (fusible resistors). In contrast to other resistors that can easily start a fire and develop a short when overloaded, these go open circuit, and are flameproof.
Unfortunately, a value of 3k9 seems impossible to source in any reasonable quantity – but 3k3 should work perfectly fine. Digikey offers the Vishay NFR25H series, also 0.5 Watts.

Spare parts
3562a pwr supply irf450 3k3 fusible

Note – why did HP use a fusible resistor? Why not replace with a regular resistor? Please, never even consider it, unless you it’s a client that doesn’t pay the bill… it’s a serious risk of fire, and it is not just a bodge but an unacceptable safety hazard.

That’s why… the red trace is 400 VDC at multiple Amps, and imagine the Q40x have a gate-drain short…
3562a pwr supply schematic detail

Didn’t take long to replace the IRF450s and the two resistors – and, to everyone’s full satisfaction, the 3562A powers up, no issue. Not sure what caused the defect in the first place – maybe some overvoltage in the power line? We might never find out.

Harrison HP 6202B Power Supply – revisited

After doing a quick repair yesterday – a sleepless night, because of the out of spec ripple. Well, not quite that bad. But typically, all HP instruments hold up to standard, it would be a big surprise if this one can’t be brought back into spec.

First, desoldered all of the capacitors (they used a lot of solder!), and checked them – surprisingly enough, they still work perfectly fine, all 1967 vintage.
Next item, the recifier diodes – some might be leaky. Therefore, just replaced them with “modern” 1N4004. But this didn’t cure the ripple.

Next item, the 6202B has a reference circuit, and, the output had 10 mV noise – ripple. That’s far too much, and did not fully feed through to the output.
What caused this issue? – the defective capacitor (see earlier post) is the filter cap for the reference. Seems the replacement cap doesn’t give the same filtering – just added a bigger capacitor in parallel.

The result – at about 50% load (2 mV per DIV, sorry, don’t have a better scope here)
6202B improved noise

About 0.8 mVpp, estimated 0.25-0.3 mVrms. Amazing. Fully working again.

Harrison HP 6202B Power Supply

A quick repair job – an old but trustworthy Harrison (HP) 6202B powder supply. 0-40 Volts, 0-0.75 A.
This is quite a useful range, has overrange to about 45 V, and a good compagnion for a 6200B supply that I have been owning for a long time.

This is it:
harrison 6202B

A suspicious label:
6202B label

It worked well, but had excess noise and some oscillation, when loaded. BTW – no fancy dummy load here:
dummy load

The inner workings –
620BB circuit

After some clearing, more or less washing it with isopropyl alcohol, I found this capacitor, date code 6708 – February, 1967, not quite 50 years.
6202B defective capacitor

After a few hours of test run, under about 50% load, a quick check – at various loads, with and with out current limitation. That’s the kind of noise I’m getting. It is mainly 60 Hz ripple, about 2-2.5 mV p-p; maybe 1 mVrms – a bit more than the 0.2 mVrms specified by Harrison – but still in the same range as the Vrms noise of modern power supplies.
6202B noise

3562A repair: 32 kbyte of bad EPROM data….

Using the little AVRmega32L board, and the various plugs and cables, the two ROM boards (one good, one bad) were read, and all images of the ROMs compared. And, finally, the 6th EPROM of the lower byte – U106, only reads 0x00. That’s not how it is supposed to be. Also, after leaving the board switched on, U106 is warming up, much more than the others. So it is definitely at fault.

3562a U106 BAD EPROM

After some careful desoldering, the culprit was extracted. Cross checked the analysis with a regular EPROM programmer, and in fact, it is not working at all. Well, well. Now, just need to get a 27256 or 27c256, and this will fix the 3562A, and it can go back into service (imagine, this unit is still commercially used). Fair enough.

3562A Dynamic Signal Analyzer: reading the ROMs

I happen to have a 3562A for repair, which had a defective power supply, and after fixing this, it still doesn’t work – traced the error to the ROM board. It is really a coincidence that I own a more or less identical unit, which is working. Therefore, after checking all the supply rails to make sure nothing is going to damage it, I swapped out the ROM board with the working unit, and, there we go, it does the trick.

Now, how to find the defect? – first, a quick check of all the address logic, to no avail.

So the defect must be located in one of the ROMs. Have a look, the board has 2×18 pcs, Intel P27256, 32 kByte each:
3562a rom board 03562-66503 rev b

These chips are representing 589814 words of data (16 bit bus): a massive 1.179648 Megabytes, holding the program for the 3562a.

To get it powered up, first surprise, the thing draws nearly 2 Amps, about 55 mA each. Checked with the datasheet – and in fact that’s what these little heaters need.

Checking with the schematic, seems that this is an earlier version of the board, Revision B. That’s a pitty, because Rev C is much more common, and ROM images would be available off the web. Judging from the datecodes, manufactured in 1986. Still, a great instrument, low noise, build in source, and easy to use.

The circit of the board is really nothing special, a few decoders, and the memory bank, with some bus drivers.
03562-66503 address decoder

The plan is as follows:

(1) Read out the bad board (reading data from this first, just in case I accidentially damage something).
(2) Read the working board.
(3) Compare the EPROM images from both boards.
(4) Replace any defective EPROM(s). The ones installed are single time programmable, plastic case, but not an issue at all to replace them with regular UV-erasable EPROMs, if needed.

Desoldering all the 36 EPROMs – absolutely no option with the tools I have around here. With a few wires, and a ATmega32L board (JY-MCU AVR minium board V 1.4, always handy to have a few of them around), it was just a matter on an hour to get everything set up, not the fastest way, but the data will be clocked out byte by byte…

reading from the 3562a rom board 03562-66503 rev b

Now it is just a matter of time, for the defective chip to show up.

Leveler calibration PROM, now: EPROM

Fortunately, the manual of the Wavetek has some detail on the leveler correction PROM. Essentially, it is fed with 8 bits representing the frequency, 255 (0xff) for 7.0 GHz, 0 (0x00) for 12.4 GHz. For each of the 256 steps, it has a correction byte stored in a Texas Instruments TBP28L22N 256×8 PROM. This is programmed at the factory, to match each individual RF deck.

20140827_075737p

Getting this exact device and programming tools ready was out of question, some of these PROMS might still around, with datecodes of the 80s, but really not worth the effort and cost.

Step-by-step

Step (1) – A little test rig was set up, with the recently repaired HPAK 8904A as a DC source (can source -10 to +10 Volts, in very fine steps), and the DC voltage connected to the leveler correction control voltage line. The Wavetek is designed for servicability, and there is a nice jumper to disengage the actual level correction DAC, and the feed an external voltage instead. An EIP 545A was used as a frequency counter and power meter. Cable and EIP 545A power meter accuracy was tested with my best calibrated source at hand, and found to be within +-0.5 dB over the 7 to 12.4 GHz band.

Step (2) – Data were collected by setting the Wavetek to various frequencies, mostly in 0.5 GHz steps, and the control voltage was adjusted for the power meter to read about 0 dBm. The data were then used to calculate the coefficients of a forth degree polynomial, and converted to the 256×8 bit format. The Wavetek uses a DAC0800LCN DAC, and the output voltage (after the on-board opamp, a LM307N) was found to be very close to 10.00 V with 0xff input, and nearly -10.00 V, for 0x00.

wavetek 907 cal
wavetekcorr

Step (3) – The tricky part. How to get a replacement for the 28L22 PROM? There are mainly two choices, one option would be to use a little microcontroller, that can easily function as a pseudo-memory, or use something more permanent, in this case, an EPROM. I had some 2532 around, therefore, not much effort. Only a small fraction of the 2532 will be used, 2 kbit of a total of 32 kbit. What a waste!
Unfortunately, the 2532 isn’t close in size to the 28L22, nor are the pins arranged in a similar fashion – but this can be solved with a little adapter board, and a few wires. Not the most beautiful solution, but who cares, it works!

20140827_075707

Leveler – Missing part!

As it turns out, somebody must have opened up the Wavetek 907A before, and it is missing a crucial part – the detector, for the leveling circuit! Checked out with the manual – there used to be a 6 dB pad (to get better SWR for the detector), and a positive-type tunnel diode detector (SMA input, SMA output). Nothing I have around here surplus.

20140825_130103p

Wait – there is a spare HP Schottky negative-type detector around in a drawer back home in Germany, and coincidence allowed to have it carried over to the US. This litte device as SMA input, SMC output, and with a little SMC to SMA adapter, at least a mechanical fit.

A little mod will is required to get this going, changing the polarity of the input amplifier. No big deal:

20140827_075831

Next step – there are correction coefficients stored in the Wavetek (in ROM), to compensate for signal losses along the RF chain, and to keep the output calibrated. This will require some more thought, to be continued.

HPAK 8904A – Power supply repair

With the failed parts identified, we need a replacement for the FES8DT diodes: 200 V, 8 A, 0.95 V drop, 35 ns recovery time, 125 A surge current.

Something more rugged – because already on the datasheet, it says “Ultrafast, rugged” – what do you want more – are the BYV79E-200 diodes.
These are 200 V, 14 A, below 0.9 V drop, 30 ns, 150 A. These should last for another 20+ years, and come in the same packaging, SOD59, aka TO220AC.

20140827_080801

Fortunately, I had some spares around from other activities, but you know – the best source is not xbay, but just some junk switchmode supplies that should be sitting around in any good electronics workshop – these are always keepers, and have come in handy as a source for parts, for more urgent (commercially relevant) repair jobs, rather than for the HPAK 8904A…

For the 8904A – one important thing! Never short out the RAM backup power on the main board – you will need to go through an activation routine, otherwise, your instrument will be rendered non-working. Don’t now why HPAK didn’t use EEPROM at the time, maybe, these were not yet invented… Following the instructions in the user manual (Thank You, HPAK, for providing all these manuals free of charge on the web!!!), the backup battery was replaced with a new Lithium cell. In the end, it might be a good idea anyway, to open-up the case every 10 years, get the the dust out, and a new battery in.

With new Schottkys, new RAM backup, new serial (and new code), the instrument is now fully functional, option 001 and 002, and will provide good service, hopefully, for decades to come!

20140827_080447

Anyone with a broken 8904A – feel free to contact me!