Category Archives: HP 8566B Spectrum Analyzer

HP 8566B Spectrum Analyzer: lock and roll issues

With the 8566B main issues fixed, I carried out extensive tests, also switching it on and off many times, running it for a while. So far so good. With all the tests, discovered only one issue, unstable display for spans above 5 MHz.

The instability is difficult to see on the picture, it is a bit random, and at slow sweep, the trace becomes very wobbly and noisy. Jumps around. The common suspects are the A19, A20, and maybe A21 assemblies, these control the YTO. There are various capacitors on these boards that may fail or leak. Or some dead bits on the DAC, or similar. A bit strange that it works so well below 5 MHz span – isn’t it? Not really, because the 8566B has a different mode of operation, depending on the sweep width. Below 5 MHz, the LO stays locked all the time, above, it is only locked at the start of the sweep, and then the YTO is swept just be increasing the tuning coil current in a linear (and linearized) fashion.

After considerable study, probing, checking capacitors, including desoldering some – no success. Some more checks, solder joints fixed, finally, so occasional improvement. Touching the assemblies A19, A20, some response.
From that, suspected a contact issue with the board edge connectors, and indeed, these were not very clean. So I gave them a thorough treatment with polishing cloth, rubber erasor, alcohol. Reseated the boards, A19 and A20.

Finally, the sweep is very stable. Seems a lot of unnecessary concerns about capacitors and such, but well, finally, fixed. Screen shows a reference (stored) trace with slightly below 5 MHz, and a longer time max-hold display, slighly above 5 MHz span. Clearly, not much noise and instability. All looking good.

HP 8566B Spectrum Analyzer: Defective and fake transistors, and finally, a HP 4-404 equivalent

Recently, I got a HP 8566B at very low cost, unknown working condition of course. First, it would not power on, at least not fully. Some activity on the 8566B, but no display at the 85662A display unit.
Clearly, next step, to open it all up and do a good survey. Quickly found the issue in the 85662A power supply board. While all the other boards where good and clean, the power supply boards are directly in the airstream and showed some leg corrosion of transistors. Especially, 2n2369A transistors, and the famous 4-404 HP transistors (not that the 4-404 is anything special, but there are no replacements mentioned by HP.

Recently I found in some late 8662A boards that HP subsitute the then obsolete 4-404 with a MPS6521, a high gain NPN transistor. So I did the same and put in BC337-25 (-40 may be a closer match but not at hand here).

With these fixes, the 8566V turns on just fine, but it doesn’t turn off well. The 5.2 V rail goes high a little, and then nothing happens, no power down, when you switch the analyzer off. So measures all currents and voltages in the 5.2 V supply, and finally traced it to a defect of the main power transistor, a 2n5886 equivalent power NPN transistor in TO-3 case.

Checked it out internally, the defect is actually within the area of the bonding wire connection. So the transistor became better, non conducting, once I pulled of the bonding wires and measured directly on the die.

Quickly ordered some 2n5886 from China, a bag of 5 for less than a dollar a piece including shipping. Well, you get what you pay for. Look at the small die, the missing plate (die is directly bonded to the steel case, the bonding wires much thinner).

Doesn’t look like a genuine ON brand device, even the marking is not in accordance to the datasheet.

For comparison, the HP-Motorola part:

Tried to fix it with a 2n3055 temporarily, but it turns out there is not enough gain with that transistor. So the rail would only go up to 4 Volts.

The 2n5886 is a quite remarkable device, high current and substantial gain.

Finally, I got hold of this “Motorola” device, it may be genuine, at least it looks like solid quality. So I unstalled it for a test.

You can see it installed, a new and shiny transistor. Soldered it in generously applying solder.

Voltage is spot on without any adjustments.

Now all seems to work, except the various IF filters need a bit of alignment.

Although they are brittle, for these adjustments ceramic screwdrivers are definitely handy. Make sure to isolate other screwdrivers, easily there can be shorts when adjusting, resulting in complicated repairs of the IF signal chain.

Finally all adjusted within the toleraces, there are all too many adjustable capacitors inside this unit!!

At least, a well worthwhile repair, because the CRT is like brand new. It seems that someone had replaced it, but then put very little further use on the unit. I plan to use it together with my microwave phase noise measurement installation, for rough characterization of microwave sources prior to engaging the complicated phase noise test gear.

HP 85662A Spectrum Analyzer Display: a quick fix of the 120 V power supply

A 85662A spectrum analyzer display for repair, the symptom (I didn’t take a picture) – a green square in the middle of the CRT -some lines are visible within, but no proper display. So, acceleration, CRT, and focus seem good – at least it seems to be a manageable fault rather. Maybe something with the XY deflection amplifiers – but why would both fail at the same time? In any case, first things first and checked the power supply. All the LEDs are on, on the power supply boards, but there is no output on the 120 VDC supply (well, some output, like 7 VDC) – the supply that is essential for the deflection system to work.

Some study of the schematic of the A1A7 assembly. Note that the voltages differ with the serial, this is a 85662-60235 part number board. Q7 is a current source that is driving the main transistor, Q8. If the voltage is trending higher, some of the Q7 current will be shunted to ground through U2.

It is a bit troublesome and dangerous to work on the life circuit (about 150 VDC at the input!). So, I did a check of all the transistors with a diode tester – and found the B-C junction of Q5 shorted. A HP part 1854-0019.

Some study of cross-reference lists, the 1854-0019 is a simple 2N2369A, found some in the basement parts storage (even a military rated and tested JANTX2369A with golden legs!).

Still, even with this fixed, no success. Further to other parts – replaced the green parts in the picture, an LM301 opamp, and another transistor, with no luck. Finally, soldered a few wires to the board and did careful checked in the circuit with power on, it can’t be helped otherwise it seems.

A few minutes later – the failure found. The Q7 current source is not giving any current, the base of Q7 is not biased properly. An open 110 kOhm resistor! It is quite rare to find defective resistors in HP equipment, but especially high value resistors running at higher voltage are prone to aging and failure, eventually.

With a simple, new resistor added, a metal film 110 kOhm, the supply is working again, and so is the 85662A.

HP 8566B Spectrum Analyzer: A19 board, YTO unlock, bad precision trimmer(s)

Not the first HP 8566B on the bench, and not the first at all showing the famous “YTO unlock” message. Most of these YTO unlock message issues can be traced to defective capacitors, but not this time.

With the 8566B, take my advise, don’t touch any of the assemblies if you aren’t really sure which one is at fault, it is a fairly complex machine. To troubleshoot, a microwave counter is handy, to check the LO frequency.

8566b-repair

Next, the PLL was disengaged by disconnecting the cable from the sampler/LO pll. Still, no good LO frequency output. This leaves two main assemblies to be checked, the LO pretune DAC, and the YTO driver assembly, A19 and A20, respectively.

Quickly traced the issue to the A19 DAC assembly, and luckily enough, had a spare one around, albeit, an older version. After swapping the boards, it was confirmed that the A19 assembly is really the faulty part.

8566b-085660-60164-a19-brd

8566b-085660-60212-a19-brd-old-version

Next – desoldered all the capacitors at one end, but, to my surprise, all useless work, all caps in best working order, even after 25+ years!
Checked various components, and finally, found some issue with the precision trimmers – seems a cold or aged solder joint. To be sure the the fix is as permanent as possible, all the trimmers were removed, the solder connections cleaned, and all installed back in. Easy fix, all working again.

With this unit, there was no intention to do a full calibration, but as an extra service, I checked the power at the reference signal outlet – see below. Quite amazing how accurate, and pretty sure that this unit hadn’t been at a cal lab for at least 15 years….. this is really a superb level of lasting precision and quality, and ingenious engineering.

8566b-pwr-ref-test

HP 8566B (85662A) Spectrum Analyzer: fixing the 10 Hz issue, A4A7 3 MHz filter assy

The 8566B/8568B analyzer both use the 85662A spectrum analyzer display section, which is not just a display but also takes care of the IF processing. For the 10 Hz to 1 kHz bandwidths, a 5 pole xtal filter is used. A rather delicate assembly that dates back the the earlier analyzers, 8565A, in somewhat modified form. As a side note, HP had a strong tendency to utilized time proven circuits, some of them, over periods of 20 to 30 years… it helps with the repairs, once you get used to a certain assembly, the same pattern is repeating in multiple instruments. One of the examples it the A4A7 assembly of the 85662A (p/n 85662-60004). It is a rather ingenious design, and is critical for the 10 Hz resolution which makes the 8566B/8566B units so useful to resolve close-in spurs, like mains spurs.

The unit currently on my bench showed issues in the 10 Hz bandwidth – not enough gain. First, I assumed it to be an alignment issue, and spent quite a while re-adjusting the circuit. To no avail (well, it helped to improve the passband shape, which is now perfectly symmetrical again).
Almost wanted to give up. But not quite.

Checked the gain of the A4A7 with one of the stages, at a time, bypassed by a substitution circuit, a 47 n capacitor, in series with a 2.8 ohms resistor (see earlier entry). And, quite surprisingly, the gain of the 10 Hz bandwidth increased dramatically when shorting the 5th of the xtal poles.

8566b peaking cap

After careful inspection, notice the peaking cap. It is at its lowest value – this might be the issue – each of the poles has at least 3 adjustments: center, symmetry, peaking, and 2 of the poles, also a gain adjustment…. Maybe, the 5th stage (which is working at all the other bandwidths), is just not set to peak!!

85662-60004 a4a7 assy 5th pole

The 68 p capacitor, it is a factory selected component, and 68-82 p is the allowable range. This assembly had a 82 p fitted, but only at the 5th stage… well, just a few pF too much.

Where to get a 68 p cap (a silver mica…) now, one big ocean away from the well-assorted stock back home in the main workshop? Well, always good to have some old, spare HP boards at hand:
8566b scrap board
…one of them now is missing a 68 p cap….

After some re-tuning, running the calibration routine, look at the result, before and after:
8566b corr coeff before and after repair
…there are the missing 2 dB. Problem solved!

HP 8566B Spectrum Analyzer: YTO/YTX tuning, flatness adjustment, and an OCXO

The 8566B I am dealing with here as parts from at least three units, so no wonder that the YTO/YTX drivers are all completely out of adjustment. So much that the LO sometimes locks on an incorrect multiple of the reference, or that it doesn’t lock at all.

Well, the adjustments are all well described in the manuals, rather straightforward.

8566b corr coeff
The amplitude offset at 10 Hz, a bit more than I want it to be, but this is related to the A4A7 assy of the 85662A, not to the 8566B itself.

8568b flatness adjusted
Might still tweak it a little bit, when all repairs are complete, but for now, a quite satisfactory result.

The OCXO, it is mounted in a set of 3 rubber isolators, here are the rough dimensions, if you want to fit a custom OCXO….
0960-0477-1 osc 49-61c dimensions

8566b 0960-0477-1 osc 49-61C 10 mhz ocxo

From the service manual – there are at least two versions of the 8566B, one using the HP 10811, and the other, using an Ovenaire OSC 49-61C.
8566b a22 assy ocxo

As far as I know, the oscillators have more or less the same performance level, but the connectors on the motherboard are different (still carrying the same voltages – the 10811 has small add-on regular board, 5062-1909), and there may be also differences in the holding brackets.
5062-1909 10811-60111 board
Notice the different plug! I have a spare 8568B motherboard around that supports this connector style.

One of the many test results, the 22 GHz noise floor.
8566b baseline noise 22 ghz

Not bad at all, about -118 dBm. Also checked the power line spurs and the noise characteristics, all considerably better than specified.
The only downside: total weight, of the 8568B: 112 lbs, and two strong fans.

HP 8566B Spectrum Analyzer: 2 partial units and some spare parts

This story starts with a set of rather valuable 8566B parts that I received for free a litte while ago:
8566b spare parts

A partial unit, stripped of of most of its RF parts, and missing some boards, and missing the OCXO.
8566b partial unit1

For a long time, I have been looking for another partial unit that can provide the missing boards, the OCXO, and some bits of hardware to complete the instrument. Not worried about the 85662A display units, because I have a perfectly working spare unit around, or could use the unit of the 8568B.
Finally, a unit showed up, also missing some boards and parts, but luckily, not the boards that I needed -except, also no attenuator, and no OCXO here.
8566b partial unit 2
8566b partial unit2

That’s the start, the empty space that is going to hold the RF treasures:
8566b empty space

The YTO assy, missing the YTO, and other bits.
8566b yto loop incomplete

This part, the 5086-7226, to do it fully justice, one would have to talk about it for a few hours. It is a not only gold plated inside and out, but HP used two kinds of solds, of different melting point, to assemble the inner workings in subsequent steps, without melting the already assembled parts….
8566b 5086-7226 YTF

Some more pictures – the YTF driver.
8566b ytf driver front
8566b yig driver back

The 1st and 2nd converter assy, ready for the semi rigid lines to be attached.
8566b 1st and 2nd converter

A high quality input relais and a band pass filter.
8566b input relais and bp filter

Well, unfortunatly, don’t have a spare 8566B/8568B OCXO around, and they go on xbay for no less then USD 50, often, no less then USD 100, that’s ridiculous.
May this unit, which is very low phase noise, very stable, from a HP 3585A analyzer, can be made fit? Ovenaire OSC 73-52.
8566b spare ocxo 0960-0465 ovenaire osc 73-52 10 mhz

After a LOT of fiddly work:
8568b assembly progress

8568b testing

A first signal!! Amazing! Frequency is off by 80/300 MHz – the unit will need a proper alignment, but the PLLs are all locked, which is a great start.
8566b a signal

And, the noise – the effect of harmonic mixing can be clearly seen, so the input stage and mixers seem to be all working!
8566b noise

More to come!