A13 30 MHz Reference Oscillator: a reasonably quiet oscillator, and a noise cable

A nice little oscillator assembly came my way, supposed to generate about 17 dBm at 30 MHz. Nothing special at first glance, but after checking out its internals, it appeared to be worth a more careful look.

a13 ref osc

A hand-made box, and even more labor intensive assembly work inside. All build by point-to-point wiring, using only the best components available, glass trimmer caps, filters, mica caps – most of these parts are still available today – about 100 USD bom, at least.

a13 upper side

a13 lower side

After a bit of reverse engineering, here the schematic, a modified Colpitts oscillator. Note: base resistor of 2N5109 is 150 Ohms.

a13 schematic

To measure phase noise, connected it to my HP 3585A spectrum analyzer (this is really a great piece of equipment, a bit heavy, but still best of class noise performance and holding this title for the last 35 years….). Connected the oscillator via a 6 dB attenuator, to provide a clean load to the output, rather than dealing with the imperfections of cables, adapters, and the analyzer input.

30 mhz ref osc floor0

Quite shocking, all this noise. The green trace shows the analyzer noise floor. Check, and re-check, still a lot of noise. Too much to be true. After 3 hours of tests, found the issue: a defective BNC cable. Center connector was fine, but both shields were non-connected.

a13 bnc plug

A bit more examination of these cable shows their lousy construction. Not bad for 2 dollars a piece, but you get what you pay for…. the shield is not even reaching to the plug – there is a 5 mm gap from the screen end, to the actual plug. So even if all would have been connected fine, the would still be a lot of leaking, from inside out, and outside in.

a13 rg-58u cable

Notice the BNC plugs – these have a somewhat uncommon construction, the dielectric is covered at the front… not quite according to BNC standard.

a13 bnc cable assy

Clearly visible, the cold solder joint…. Turns out, both ends were open-circuit at the shield.

a13 bnc cold solde

Finally, using a good quality BNC cable (also, using LMR-195 double-screened cable). Looking much better. Noise is down -115 dBc at 10 kHz from carrier. It’s good, but not great. I think one could do better, especially, considering all the pricy parts, and high-quality construction. A good target for a Colpitts osciallator would be better than -130 dBc, at 10 kHz separation.

30 mhz ref osc recheck1

Note the pink trace – this is the bad cable, terminated with a 50 Ohm resistor (with the shield broken at both sides, it is actually a 1 meter wire antenna, with an open-circuit 50 ohm resistor at the end).

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.